98%
921
2 minutes
20
Background And Aims: Evaluation of the programmed cell death ligand-1 (PD-L1) combined positive score (CPS) is vital to predict the efficacy of the immunotherapy in triple-negative breast cancer (TNBC), but pathologists show substantial variability in the consistency and accuracy of the interpretation. It is of great importance to establish an objective and effective method which is highly repeatable.
Methods: We proposed a model in a deep learning-based framework, which at the patch level incorporated cell analysis and tissue region analysis, followed by the whole-slide level fusion of patch results. Three rounds of ring studies (RSs) were conducted. Twenty-one pathologists of different levels from four institutions evaluated the PD-L1 CPS in TNBC specimens as continuous scores by visual assessment and our artificial intelligence (AI)-assisted method.
Results: In the visual assessment, the interpretation results of PD-L1 (Dako 22C3) CPS by different levels of pathologists have significant differences and showed weak consistency. Using AI-assisted interpretation, there were no significant differences between all pathologists (P = 0.43), and the intraclass correlation coefficient (ICC) value was increased from 0.618 [95% confidence interval (CI) = 0.524-0.719] to 0.931 (95% CI = 0.902-0.955). The accuracy of interpretation result is further improved to 0.919 (95% CI = 0.886-0.947). Acceptance of AI results by junior pathologists was the highest among all levels, and 80% of the AI results were accepted overall.
Conclusion: With the help of the AI-assisted diagnostic method, different levels of pathologists achieved excellent consistency and repeatability in the interpretation of PD-L1 (Dako 22C3) CPS. Our AI-assisted diagnostic approach was proved to strengthen the consistency and repeatability in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/his.15205 | DOI Listing |
Eur J Med Res
September 2025
Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.
View Article and Find Full Text PDFBMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFBMC Musculoskelet Disord
September 2025
Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.
Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.
Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.
J Cancer Res Clin Oncol
September 2025
Department of Surgery, Mannheim School of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.
Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.