98%
921
2 minutes
20
The cyclization reactions of keto-hydroperoxide (KHP) radicals leading to the formation of keto cyclic ethers and OH radicals play an important role in low temperature combustion for hydrocarbon fuels or oxygenated hydrocarbon fuels. However, due to the lack of kinetic data of cyclization reactions of KHP radicals, researchers often derive high-pressure-limit rate constants of cyclization reactions of KHP radicals from analogous cyclization reactions of hydroperoxyl alkyl radicals during construction of the combustion mechanism. This study aims to systematically investigate the kinetics of cyclization reactions of KHP radicals involving short-to-large-sized radicals. The studied reactions are divided into 7 reaction classes, according to the size of the cyclic transition state, the conjugative effect (whether KHP radicals are resonance-stabilized or not), and the position of the carbonyl group (whether the carbonyl group is inside or outside of the reaction center). The isodesmic reaction method, in conjunction with transition state theory, is utilized for each reaction class to compute the energy barriers and high-pressure-limit rate constants at the DFT level. The study revealed that energy barriers calculated at the DFT level with correction by the isodesmic reaction method are close to the results from the benchmark CCSD(T) method. To develop more accurate rate rules, these reaction classes are further divided into subclasses based on the relative site of the OOH group with the carbonyl group, the type of carbon atoms where the OOH group is located, and the type of carbon atoms where the radical site is located. For each subclass, high-pressure-limit rate rules are derived by averaging the rate constants of reactions in the subclass, and it is found that the maximum absolute deviation of the energy barrier and the ratio of the largest rate constant to the smallest rate constant among reactions in each subclass are within chemical accuracy limits, indicating acceptable use of the developed rate rules. A comparison of the rate constants for cyclization reactions of KHP radicals with the values of analogous cyclization reactions of hydroperoxyalkyl radicals as provided in reported mechanisms is made. Additionally, a comparison is drawn between our developed rate rules for subclasses of the cyclization reactions of KHP radicals and the rate rules for analogous subclasses of cyclization reactions of hydroperoxyl alkyl radicals. These comparisons demonstrate significant differences and highlight the necessity for improved rate rules for cyclization reactions of KHP radicals to enhance the automatically generated combustion mechanisms for hydrocarbon and oxygenated hydrocarbon fuels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.3c08394 | DOI Listing |
RSC Adv
September 2025
Department of Chemistry, University of Rajasthan Jaipur 302004 India
A one-pot strategy was developed for the synthesis of α-substituted 2-benzofuranmethamines from salicylaldehydes, phenylacetylenes, and cyclic secondary amines using CuFeO as a bifunctional catalyst. The reaction proceeds at 80 °C in 1,4-dioxane using CsCO as a base, enabling sequential A-coupling, 5--dig cyclization, and 1,3-allylic rearrangement in a single operation. Unlike previous methods, this protocol employs non-precious metal catalysts and mild reagents, operates under moderate conditions, and provides direct access to α-substituted 2-benzofuranmethamines in good yields (80-96%) with broad substrate compatibility.
View Article and Find Full Text PDFRSC Adv
August 2025
Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
Indolo/benzimidazo-isoquinoline scaffolds are frequently found in many natural products, pharmaceuticals, and organic materials. Owing to their prominent properties, in recent years, numerous studies have been performed on the synthesis of indolo/benzimidazo-isoquinoline derivatives photo-, and electro-promoted functionalization/cyclization reactions of -acryloyl 2-aryl indoles/benzimidazoles. In this review, we describe these fascinating transformations and discuss their mechanistic insights.
View Article and Find Full Text PDFJ Org Chem
September 2025
Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. of China.
A Mg(OTf)-catalyzed asymmetric Michael addition/cyclization cascade reaction between 3-isothiocyanato oxindoles and 2-arylidene-1,3-indanediones has been developed. This transformation provides an efficient and concise approach to biologically important bispiro[indanedione-oxindole-pyrrolidinyl]s under mild conditions in good to excellent yields (70-99% yields) with moderate to good stereoselectivities (up to 99% and >95:5 d.r.
View Article and Find Full Text PDFJ Mol Model
September 2025
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, People's Republic of China.
Context: This study systematically investigates the growth mechanism of nitrogen-doped graphene in a plasma environment, with a particular focus on the effects of temperature and hydrogen radicals on its structural evolution. The results reveal that, at 3000 K, the formation of nitrogen-doped graphene proceeds through three stages: carbon chain elongation, cyclization, and subsequent condensation into planar structures. During this process, nitrogen atoms are gradually incorporated into the carbon network, forming various doping configurations such as pyridinic-N, pyrrolic-N, and graphitic-N.
View Article and Find Full Text PDFJ Org Chem
September 2025
School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
A palladium-catalyzed cyclization and carbonylation of -propargylamides with amines has been developed, which incorporates an amide unit into 3,4-dihydroisoquinolin-1(2)-one scaffolds. By using benzene-1,3,5-triyl triformate (TFBen) as the safe and convenient CO source, the reaction proceeded smoothly to afford a variety of amide-containing 3,4-dihydroisoquinolin-1(2)-one derivatives in high yields.
View Article and Find Full Text PDF