98%
921
2 minutes
20
Discriminating secretory phenotypes provides a direct, intact, and dynamic way to evaluate the heterogeneity in cell states and activation, which is significant for dissecting non-genetic heterogeneity for human health studies and disease diagnostics. In particular, secreted microRNAs, soluble signaling molecules released by various cells, are increasingly recognized as a critical mediator for cell-cell communication and the circulating biomarkers for disease diagnosis. However, single-cell analysis of secreted miRNAs is still lacking due to the limited available tools. Herein, we realized three-plexed miRNA secretion analysis over four time points from single cells encapsulated in picoliter droplets with extreme simplicity, coupling vortexing-generated single-cell droplets with multiplexed molecular beacons. Notably, our platform only requires pipetting and vortexing steps to finish the assay setup within 5 min with minimal training, and customized software was developed for automatic data quantification. Applying the platform to human cancer cell lines and primary cells revealed previously undifferentiated heterogeneity and paracrine signaling underlying miRNA secretion. This platform can be used to dissect secretion heterogeneity and cell-cell interactions and has the potential to become a widely used tool in biomedical research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2024.116303 | DOI Listing |
Methods
September 2025
Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China. Electronic address:
Single-cell surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for precision medicine owing to its label-free detection, ultrasensitivity, and unique molecular fingerprinting. Unlike conventional bulk analysis, it enables detailed characterization of cellular heterogeneity, with particular promise in circulating tumor cell (CTC) identification, tumor microenvironment (TME) metabolic profiling, subcellular imaging, and drug sensitivity assessment. Coupled with microfluidic droplet systems, SERS supports high-throughput single-cell analysis and multiparametric screening, while integration with complementary modalities such as fluorescence microscopy and mass spectrometry enhances temporal and spatial resolution for monitoring live cells.
View Article and Find Full Text PDFAnal Sci Adv
December 2025
Chinese Academy of Quality and Inspection & Testing Beijing China.
Single-cell analysis provides critical insights into cellular heterogeneity, dynamic behaviours and microenvironmental interactions, driving advancements in precision medicine and disease mechanism research. However, traditional technologies face limitations due to low throughput, insufficient sensitivity and bottlenecks in multi-omics integration. Microdroplet printing technology, with its advantages in high-throughput single-cell encapsulation, picolitre-level reaction precision and oil-free phase contamination avoidance, has propelled single-cell analysis into a new era of high-throughput and high-dimensional resolution through deep integration with multimodal detection platforms.
View Article and Find Full Text PDFClin Chim Acta
September 2025
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical, Tehran, Iran. Electronic address:
Acute myeloid leukemia (AML) represents a genetically heterogeneous malignancy, with mutations in the nucleophosmin-1 (NPM1) gene identified as the most prevalent and clinically significant molecular biomarkers. These mutations play a crucial pivotal role in the realms of diagnosis, prognosis, and therapeutic decision-making. Although an ideal measurable residual disease (MRD) test has yet to be developed, there is increasing acknowledgment of the significance of advanced molecular methodologies for monitoring MRD in NPM1-mutated (NPM1) AML.
View Article and Find Full Text PDFLab Chip
September 2025
Department of Biomedical Engineering, Lund University, Lund, Sweden.
Droplet splitting plays an important role in droplet microfluidics by providing precise control over droplet size, which is essential for applications such as single-cell analysis, biochemical reactions, and the fabrication of micro- and nanosized material. Conventional methods of droplet splitting using obstructions or junctions in the microchannel have a clear limitation that the split ratio for a particular device remains fixed, while existing active splitting methods are constrained by low flow rates, the need for complex systems, or limitations to specific droplet types. In this study, we demonstrate that droplet splitting can be achieved simply using a one-dimensional standing-wave field excited within a microchannel.
View Article and Find Full Text PDFSingle cell technologies have advanced at a rapid pace, providing assays for various molecular phenotypes. Droplet-based single cell technologies, particularly those based on nuclei isolation, such as simultaneous RNA+ATAC single-cell multiome, are susceptible to exogenous ambient molecule contamination, which can increase noise in cell type-level associations. We reasoned that genotype-based sample multiplexing can provide an opportunity to infer this ambient contamination by leveraging DNA variation in sequenced reads.
View Article and Find Full Text PDF