Type I [4σ+4π] versus [4σ+4π-1] Cycloaddition To Access Medium-Sized Carbocycles and Discovery of a Liver X Receptor β-Selective Ligand.

Angew Chem Int Ed Engl

Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Laboratory for Marine Drugs and Bioproducts of Marine Natural Products, Ocean University of China, 5 Yushan road, Qingdao, 266003, China.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transition-metal-catalyzed [4+4] cycloaddition leading to cyclooctanoids has centered on dimerization between 1,3-diene-type substrates. Herein, we describe a [4σ+4π-1] and [4σ+4π] cycloaddition strategy to access 7/8-membered fused carbocycles through rhodium-catalyzed coupling between the 4σ-donor (benzocyclobutenones) and pendant diene (4π) motifs. The two pathways can be controlled by adjusting the solvated CO concentration. A broad range (>40 examples) of 5-6-7 and 5-6-8 polyfused carbocycles was obtained in good yields (up to 90 %). DFT calculations, kinetic monitoring and C-labeling experiments were carried out, suggesting a plausible mechanism. Notably, one 5-6-7 tricycle was found to be a very rare, potent, and selective ligand for the liver X receptor β (KD=0.64 μM), which is a potential therapeutic target for cholesterol-metabolism-related fatal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202405838DOI Listing

Publication Analysis

Top Keywords

liver receptor
8
type [4σ+4π]
4
[4σ+4π] versus
4
versus [4σ+4π-1]
4
[4σ+4π-1] cycloaddition
4
cycloaddition access
4
access medium-sized
4
medium-sized carbocycles
4
carbocycles discovery
4
discovery liver
4

Similar Publications

Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.

View Article and Find Full Text PDF

Cholestasis is a pathological state characterized by the dysfunction of bile acid flow, which could lead to liver fibrosis, cirrhosis, and even liver failure, but its therapeutic agents are limited. The aim of this study was to investigate the therapeutic potential and underlying mechanism of melatonin on cholestatic liver injury. C57BL/6 J mice were fed with 0.

View Article and Find Full Text PDF

IL-17A is a pro-inflammatory cytokine that significantly contributes to the pathogenesis of autoimmune diseases, including multiple sclerosis (MS). Previous studies have suggested that PARP-1 inhibitors can modulate IL-17A-mediated inflammation, prompting the investigation of Niraparib, an FDA-approved PARP-1 inhibitor, as a potential therapeutic agent for MS. In this study, we hypothesized that Niraparib could disrupt the interaction between IL-17A and its receptor, IL-17RA.

View Article and Find Full Text PDF

Exploring LRP-1 in the liver-brain axis: implications for Alzheimer's disease.

Mol Biol Rep

September 2025

Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.

Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.

View Article and Find Full Text PDF

The Proteomic Profiling of Circulating Extracellular Vesicles of Western Diet and Chemical-Induced Murine MASH Model.

Kaohsiung J Med Sci

September 2025

Hepatitis Research Center, College of Medicine; Center for Metabolic Disorders and Obesity; Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly prevalent chronic liver condition that can progress to severe complications such as metabolic dysfunction-associated steatohepatitis (MASH). Despite its growing burden, there are no reliable non-invasive biomarkers for tracking disease progression. In this study, we established a murine MASLD/MASH model using a high-fat diet and chemical (CCl) induction.

View Article and Find Full Text PDF