98%
921
2 minutes
20
Noninvasive monitoring of biofabricated tissues during the biomanufacturing process is needed to obtain reproducible, healthy, and functional tissues. Measuring the levels of biomarkers secreted from tissues is a promising strategy to understand the status of tissues during biofabrication. Continuous and real-time information from cultivated tissues enables users to achieve scalable manufacturing. Label-free biosensors are promising candidates for detecting cell secretomes since they can be noninvasive and do not require labor-intensive processes such as cell lysing. Moreover, most conventional monitoring techniques are single-use, conducted at the end of the fabrication process, and, challengingly, are not permissive to in-line and continual detection. To address these challenges, we developed a noninvasive and continual monitoring platform to evaluate the status of cells during the biofabrication process, with a particular focus on monitoring the transient processes that stem cells go through during in vitro differentiation over extended periods. We designed and evaluated a reusable electrochemical immunosensor with the capacity for detecting trace amounts of secreted osteogenic markers, such as osteopontin (OPN). The sensor has a low limit of detection (LOD), high sensitivity, and outstanding selectivity in complex biological media. We used this OPN immunosensor to continuously monitor on-chip osteogenesis of human mesenchymal stem cells (hMSCs) cultured 2D and 3D hydrogel constructs inside a microfluidic bioreactor for more than a month and were able to observe changing levels of OPN secretion during culture. The proposed platform can potentially be adopted for monitoring a variety of biological applications and further developed into a fully automated system for applications in advanced cellular biomanufacturing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.3c02165 | DOI Listing |
J Colloid Interface Sci
August 2025
Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China. Electronic address:
Reversible electroadhesive polyelectrolyte gels have emerged as promising materials for flexible electronic and soft robotic applications. While current research predominantly emphasizes polymer design and structural optimization to enhance both the reversibility and strength of electroadhesion, fundamental limitations persist in elucidating ion-mediated interfacial mechanisms. Herein, the synergistic effects of ion species selection and interfacial engineering were systematically investigated through the development of distinct polyelectrolyte hydrogel assemblies.
View Article and Find Full Text PDFBioelectrochemistry
September 2025
Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan. Electronic address:
Early and accurate detection of circulating tumor cells (CTCs) is vital for cancer diagnosis and personalized treatment. Despite their clinical significance, the identification of CTCs remains challenging because of the biological complexity and lower concentration. Therefore, a cost-effective, and label-free electrochemical biosensor based on phenyl boronic acid functionalized graphene oxide-silica (PBA@GO-SiO) is developed to selectively recognize sialic acid-rich glycoproteins on HepG2 cells.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
State Key Laboratory of Water Pollution Control and Green Resource Recycling, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 2
In this study, a novel riboflavin-mediated nanoscale zero-valent iron/peracetic acid system (RF/nZVI/PAA) was constructed to increase the removal of norfloxacin. Under the optimal conditions (PAA=10 mg/L, nZVI=20 mg/L, RF= 1 mg/L, and initial pH =4), complete norfloxacin removal was achieved within 30 min, accompanied by a 70 % mineralization rate. Electron paramagnetic resonance spectroscopy combined with quenching experiments quantitatively identified hydroxyl radical, carbon-centered radical, and singlet oxygen as the predominant reactive oxidative species (ROS) responsible for norfloxacin removal, with contributions of 42 %, 44 %, and 10 %, respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
Dithiolene-based coordination polymers synthesized using earth-abundant transition metals have been rigorously explored for sustainable energy applications, such as solar-to-fuel conversion. The strategy of embedding molecular catalysts into extended frameworks is expected to improve the catalytic performance and reusability of the catalysts. Here, we investigate nickel benzenehexathiolate () frameworks as electrocatalysts to facilitate the hydrogen evolution reaction (HER) in acidic aqueous conditions.
View Article and Find Full Text PDFAnalyst
September 2025
UCLan Centre for Smart Materials, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
Herein, we developed a previously undescribed electrochemical nanoMIP-based sensor for the sensitive, reusable and accurate determination of human chorionic gonadotropin (hCG). Using a proprietary rapid and scalable method, hCG-selective polyacrylamide nanoMIP particles were produced within 2 h in high yields of 11 mg per 1 mL reaction batch with hCG-modified magnetic nanoparticles (MNPs@CHO@hCG). The MNPs were reusable for 5 sequential cycles of nanoMIP production.
View Article and Find Full Text PDF