Versatile Cu2ZnSnS4-based synaptic memristor for multi-field-regulated neuromorphic applications.

J Chem Phys

Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Integrating both electrical and light-modulated multi-type neuromorphic functions in a single synaptic memristive device holds the most potential for realizing next-generation neuromorphic systems, but is still challenging yet achievable. Herein, a simple bi-terminal optoelectronic synaptic memristor is newly proposed based on kesterite Cu2ZnSnS4, exhibiting stable nonvolatile resistive switching with excellent spatial uniformity and unique optoelectronic synaptic behaviors. The device demonstrates not only low switching voltage (-0.39 ± 0.08 V), concentrated Set/Reset voltage distribution (<0.08/0.15 V), and long retention time (>104 s) but also continuously modulable conductance by both electric (different width/interval/amplitude) and light (470-808 nm with different intensity) stimulus. These advantages make the device good electrically and optically simulated synaptic functions, including excitatory and inhibitory, paired-pulsed facilitation, short-/long-term plasticity, spike-timing-dependent plasticity, and "memory-forgetting" behavior. Significantly, decimal arithmetic calculation (addition, subtraction, and commutative law) is realized based on the linear conductance regulation, and high precision pattern recognition (>88%) is well achieved with an artificial neural network constructed by 5 × 5 × 4 memristor array. Predictably, such kesterite-based optoelectronic memristors can greatly open the possibility of realizing multi-functional neuromorphic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0206100DOI Listing

Publication Analysis

Top Keywords

synaptic memristor
8
neuromorphic systems
8
optoelectronic synaptic
8
synaptic
5
versatile cu2znsns4-based
4
cu2znsns4-based synaptic
4
memristor multi-field-regulated
4
neuromorphic
4
multi-field-regulated neuromorphic
4
neuromorphic applications
4

Similar Publications

The integration of information memory and computing enabled by nonvolatile memristive device has been widely acknowledged as a critical solution to circumvent the von Neumann architecture limitations. Herein, the Au/NiO/CaBiTiO/FTO (CBTi/NiO) heterojunction based memristor with varying film thicknesses are demonstrated on FTO/glass substrates, and the CBTi/NiO-4 sample shows the optimal memristor characteristics with 5 × 10 stable switching cycles and 10-s resistance state retention. The electrical conduction in the low-resistance state is dominated by Ohmic behavior, while the high-resistance state exhibited characteristics consistent with the space-charge-limited conduction (SCLC) model.

View Article and Find Full Text PDF

Synaptic plasticity is of great significance for understanding the leaning and memory processes in different brain regions since it determines the synchronized firing activities of neurons. A volatility-switchable memristor-coupled heterogeneous neuron model is proposed to explore the effects of the synaptic plasticity on the synchronous dynamics of coupled neurons in different brain regions. With the increment of the non-volatility, the critical coupling strength of synchronization between two heterogeneous neurons decreases in a power-law relationship with the character parameter of the memristor.

View Article and Find Full Text PDF

2D Tellurene-Based Optoelectronic Memristor with Temporal Dynamics for Multimodal Reservoir Computing System.

Adv Sci (Weinh)

September 2025

State Key Laboratory of Integrated Optoelectronics, Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China.

Neuromorphic multimodal perception of sensory systems can integrate the stimulation from different senses, thus enhancing the perception accuracy of organisms to understand the external environment. An optoelectronic memristor with the capability to combine multidimensional sensing and processing functions is highly desirable for developing efficient neuromorphic multimodal sensory systems (MSSs). In this work, a tellurene (Te) nanoflake-based optoelectronic memristor relying on solution plasma process (SPP) treatment is demonstrated for the first time, which is capable of combining infrared (IR) optical and electrical stimuli in a single synaptic device for a multisensory integration function.

View Article and Find Full Text PDF

2D chalcogenide-based memristors have the potential to be used in artificial biological visual systems since their synaptic behavior can be optically and electrically modulated. Furthermore, 2D van der Waals materials such as SnS can be used to integrate multifunctional optoelectronic devices by employing a rational design. Here, the simulation of a human biological visual system is reported by using multifunctional optoelectronic synaptic devices.

View Article and Find Full Text PDF

Mechano-Gated Nanofluidic Piezomemristor: Elastic Nanochannel Bridging Dynamic Pressure Modulation and Neuromorphic Plasticity.

ACS Appl Mater Interfaces

September 2025

Jiangsu Key Laboratory for Design and Manufacture of Precision Medicine Equipment, School of Mechanical Engineering, Southeast University, Nanjing 211189, China.

Nanofluidic memristors have become a hotspot in neuromorphic computing research due to their potential in modeling biological synaptic functions. However, many existing nanofluidic memristors rely on electrochemical or electric field-driven mechanisms, failing to directly mimic the properties of mechanically gated ion channels (e.g.

View Article and Find Full Text PDF