Artificial Synapse Based on a δ-FAPbI/Atomic-Layer-Deposited SnO Bilayer Memristor.

Nano Lett

School of Chemical Engineering, Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Halide perovskite-based resistive switching memory (memristor) has potential in an artificial synapse. However, an abrupt switch behavior observed for a formamidinium lead triiodide (FAPbI)-based memristor is undesirable for an artificial synapse. Here, we report on the δ-FAPbI/atomic-layer-deposited (ALD)-SnO bilayer memristor for gradual analogue resistive switching. In comparison to a single-layer δ-FAPbI memristor, the heterojunction δ-FAPbI/ALD-SnO bilayer effectively reduces the current level in the high-resistance state. The analog resistive switching characteristics of δ-FAPbI/ALD-SnO demonstrate exceptional linearity and potentiation/depression performance, resembling an artificial synapse for neuromorphic computing. The nonlinearity of long-term potentiation and long-term depression is notably decreased from 12.26 to 0.60 and from -8.79 to -3.47, respectively. Moreover, the δ-FAPbI/ALD-SnO bilayer achieves a recognition rate of ≤94.04% based on the modified National Institute of Standards and Technology database (MNIST), establishing its potential in an efficient artificial synapse.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c00253DOI Listing

Publication Analysis

Top Keywords

artificial synapse
20
resistive switching
12
bilayer memristor
8
δ-fapbi/ald-sno bilayer
8
artificial
5
memristor
5
synapse based
4
based δ-fapbi/atomic-layer-deposited
4
δ-fapbi/atomic-layer-deposited sno
4
bilayer
4

Similar Publications

Enhanced Giant Ferroelectric Tunneling Electroresistance in 2D Ruddlesden-Popper Oxides.

ACS Nano

September 2025

Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China.

Ferroelectric tunnel junctions (FTJs) based on ferroelectric switching and quantum tunneling effects with thickness down to a few unit cells have been explored for applications of two-dimensional (2D) electronic devices in data storage and neural networks. As a key performance indicator, the enhanced tunneling electrosistance (TER) ratio provides a broader dynamic range for precise modulation of synaptic weights, improving the stability and accuracy of neural networks. Herein, we report an observation of pronounced enhancement in the TER ratio by over 4 orders of magnitude through the fabrication of large-scale heterostructures combining bismuth ferrite with two-dimensional Ruddlesden-Popper oxide BiFeO.

View Article and Find Full Text PDF

Clinically, even in patients diagnosed with non-obstructive azoospermia, spermatogenesis may be present in some seminiferous tubules, which gives the patient hope of having biological offspring of his own. However, there is still a blank for high-precision detection technologies to support accurate diagnosis and effective treatment. In this work, we successfully developed a minimally invasive fine needle detection memristive device that features a structure composed of Ag/CH-MnO/FTO by utilizes the organic-inorganic heterojunction as functional layer.

View Article and Find Full Text PDF

The integration of information memory and computing enabled by nonvolatile memristive device has been widely acknowledged as a critical solution to circumvent the von Neumann architecture limitations. Herein, the Au/NiO/CaBiTiO/FTO (CBTi/NiO) heterojunction based memristor with varying film thicknesses are demonstrated on FTO/glass substrates, and the CBTi/NiO-4 sample shows the optimal memristor characteristics with 5 × 10 stable switching cycles and 10-s resistance state retention. The electrical conduction in the low-resistance state is dominated by Ohmic behavior, while the high-resistance state exhibited characteristics consistent with the space-charge-limited conduction (SCLC) model.

View Article and Find Full Text PDF

Anisotropic Optoelectronic Synapses in 2D NbGeTe for Direction-Programmable Neuromorphic Perception and Decision-Making.

Adv Mater

September 2025

Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.

Neuromorphic computing presents a promising solution for the von Neumann bottleneck, enabling energy-efficient and intelligent sensing platforms. Although 2D materials are ideal for bioinspired neuromorphic devices, achieving multifunctional synaptic operations with simple configurations and linear weight updates remains challenging. Inspired by biological axons, the in-plane anisotropy of 2D NbGeTe is exploited to develop dual electronic-optical synaptic devices.

View Article and Find Full Text PDF

2D chalcogenide-based memristors have the potential to be used in artificial biological visual systems since their synaptic behavior can be optically and electrically modulated. Furthermore, 2D van der Waals materials such as SnS can be used to integrate multifunctional optoelectronic devices by employing a rational design. Here, the simulation of a human biological visual system is reported by using multifunctional optoelectronic synaptic devices.

View Article and Find Full Text PDF