98%
921
2 minutes
20
Traditional dual-ion lithium salts have been widely used in solid polymer lithium-metal batteries (LMBs). Nevertheless, concentration polarization caused by uncontrolled migration of free anions has severely caused the growth of lithium dendrites. Although single-ion conductor polymers (SICP) have been developed to reduce concentration polarization, the poor ionic conductivity caused by low carrier concentration limits their application. Herein, a dual-salt quasi-solid polymer electrolyte (QSPE), containing the SICP network as a salt and traditional dual-ion lithium salt, is designed for retarding the movement of free anions and simultaneously providing sufficient effective carriers to alleviate concentration polarization. The dual salt network of this designed QSPE is prepared through in-situ crosslinking copolymerization of SICP monomer, regular ionic conductor, crosslinker with the presence of the dual-ion lithium salt, delivering a high lithium-ion transference number (0.75) and satisfactory ionic conductivity (1.16 × 10 S cm at 30 °C). Comprehensive characterizations combined with theoretical calculation demonstrate that polyanions from SICP exerts a potential repulsive effect on the transport of free anions to reduce concentration polarization inhibiting lithium dendrites. As a consequence, the Li||LiFePO cell achieves a long-cycle stability for 2000 cycles and a 90% capacity retention at 30 °C. This work provides a new perspective for reducing concentration polarization and simultaneously enabling enough lithium-ions migration for high-performance polymer LMBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2024.03.048 | DOI Listing |
Natl Sci Rev
September 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
Chiral halide perovskite (c-HP) semiconductors exhibit on average a large chiral-induced spin selectivity (CISS) effect. Nevertheless, the microscopic details of CISS and its integration in opto-spintronic constructs remain nascent. Reliable reporting of CISS performance characteristics represents a significant challenge in providing the necessary design rules.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia. Electronic address:
Monoclonal antibodies (mAb) have transformed modern medicine, offering targeted therapies for cancer, autoimmune disorders, and infectious diseases. To enhance patient convenience, subcutaneous administration is increasingly prioritized, requiring highly concentrated formulations. However, high viscosity of these formulations hinders manufacturability, injectability, and stability.
View Article and Find Full Text PDFBiomater Adv
September 2025
Graduate School of Medical and Dental Science, Institute of Science Tokyo, 15-45 Yushima, Bunkyo, Tokyo, 113-8510, Japan; Advanced Central Research Organization, Teikyo University, 2-11-1, Kaga, Itabashi, Tokyo, 173-8605, Japan.
This review concentrates on the electroactive ceramic biointerfaces inspired by bone piezoelectricity for advanced ceramic biomaterials. Bone generates electrical potentials through the piezoelectric properties of collagen fibrils and apatite minerals under mechanical loading. These electrical signals influence osteoconductivity and regenerative capacity by osteogenic cells.
View Article and Find Full Text PDFLangmuir
September 2025
Federal University of São Paulo, Laboratory of Hybrid Materials, Diadema, São Paulo 09913-030, Brazil.
This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.
View Article and Find Full Text PDFACS Nano
September 2025
Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
Mechanical stimuli have been shown to dynamically alter solid-liquid interfaces and induce electron transfer, enabling catalytic reactions, most notably contact-electro-catalysis (CEC). However, the underlying mechanism of charge transfer at solid-liquid interfaces under mechanical stimulation remains unclear, particularly at semiconductor-liquid interfaces. To date, rare studies have reported on the catalytic activity of semiconductor-liquid interfaces under mechanical stimulation.
View Article and Find Full Text PDF