Molecular strategies of the pygmy grasshopper Eucriotettix oculatus adapting to long-term heavy metal pollution.

Ecotoxicol Environ Saf

Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, School of Chemistry and Bioengineering, Hechi University Yizhou 546300, China; College of Life Science, Guangxi Normal University, Guilin 541004, China. Electronic address:

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To study the heavy metal accumulation and its impact on insect exterior and chromosome morphology, and reveal the molecular mechanism of insects adapting to long-term heavy metal compound pollution habitats, this study, in the Diaojiang river basin, which has been polluted by heavy metals(HMs) for nearly a thousand years, two Eucriotettix oculatus populations was collected from mining and non-mining areas. It was found that the contents of 7 heavy metals (As, Cd, Pb, Zn, Cu, Sn, Sb) in E. oculatus of the mining area were higher than that in the non-mining 1-11 times. The analysis of morphology shows that the external morphology, the hind wing type and the chromosomal morphology of E. oculatus are significant differences between the two populations. Based on the heavy metal accumulation,morphological change, and stable population density, it is inferred that the mining area population has been affected by heavy metals and has adapted to the environment of heavy metals pollution. Then, by analyzing the transcriptome of the two populations, it was found that the digestion, immunity, excretion, endocrine, nerve, circulation, reproductive and other systems and lysosomes, endoplasmic reticulum and other cell structure-related gene expression were suppressed. This shows that the functions of the above-mentioned related systems of E. oculatus are inhibited by heavy metal stress. However, it has also been found that through the significant up-regulation of genes related to the above system, such as ATP2B, pepsin A, ubiquitin, AQP1, ACOX, ATPeV0A, SEC61A, CANX, ALDH7A1, DLD, aceE, Hsp40, and catalase, etc., and the down-regulation of MAPK signalling pathway genes, can enhanced nutrient absorption, improve energy metabolism, repair damaged cells and degrade abnormal proteins, maintain the stability of cells and systems, and resist heavy metal damage so that E. oculatus can adapt to the environment of heavy metal pollution for a long time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.116301DOI Listing

Publication Analysis

Top Keywords

heavy metal
28
heavy metals
12
heavy
11
eucriotettix oculatus
8
adapting long-term
8
long-term heavy
8
metal pollution
8
mining area
8
environment heavy
8
metal
7

Similar Publications

Z-scheme Heterojunction on TS-1 Zeolite Boosting Ultrafast Visible-Light-Driven Degradation of Cr(VI) and Tetracycline.

Inorg Chem

September 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

Photocatalysis has emerged as a promising strategy to address water pollution caused by heavy metals and antibiotics. Zeolites exhibit significant potential in petrochemical catalysis; however, the development of zeolite-based photocatalysts remains a critical challenge for researchers. Herein, a novel Z-scheme heterojunction was designed and fabricated on the titanium-silicon zeolite TS-1 by modifying g-CN via a simple calcination process.

View Article and Find Full Text PDF

Objectives: Antibiotic resistance towards penicillin has been attempted to counter by chemically modifying ampicillin through the conjugation with silver nanoparticles (AgNPs). The current study optimizes the conditions for synthesizing and characterizing AgNP-ampicillin to quantify the conjugation extent, evaluate the antibacterial efficacy, and explore the underlying antibacterial mechanisms.

Materials And Methods: AgNPs were synthesized from silver nitrate by chemical reduction method, silica-coated with tetraethyl orthosilicate (TEOS) and amine functionalized by (3-aminopropyl) triethoxysilane (APTES), which was then conjugated with ampicillin via the carbodiimide chemistry.

View Article and Find Full Text PDF

Signal Peptide-Guided Delivery of a Mucin-Like Collagen Analogue for Periplasmic Barrier Reinforcement: A Platform for Enhancing Microbial Survival.

ACS Synth Biol

September 2025

Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China.

The environmental resistance exhibited by microorganisms is concerned with their ability to withstand and adapt to an array of detrimental environmental conditions, with their survival and reproductive success being threatened. Within the realm of biotechnology, which emphasizes stress resistance, a critical role in bacterial adaptive strategies to environmental fluctuations is assumed to be in the periplasmic space. An innovative methodology to augment bacterial tolerance to stress by employing a mucin-mimetic collagen analogue, designated as S1552 (which is secreted into the periplasmic compartment), is introduced by this investigation.

View Article and Find Full Text PDF

Incorporating bioaccessibility into health risk assessments enhances the accuracy of exposure estimates for heavy metal (HM) pollution, supports targeted remediation, and informs public health and policy decisions, particularly for vulnerable populations. Because HM bioaccessibility depends on local soil and geographic characteristics, identifying its relationship with soil properties is crucial for assessing soil pollution potential. Although HM concentrations can be measured relatively easily, bioaccessibility requires complex laboratory procedures, limiting routine applications in regulatory contexts.

View Article and Find Full Text PDF

The pathway of toxic heavy metals in the Caspian sea sturgeons.

Ecotoxicology

September 2025

Department of Fisheries, Faculty of Natural Resources, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.

View Article and Find Full Text PDF