98%
921
2 minutes
20
Efficient uptake, translocation, and distribution of Cu to rice (Oryza sativa) spikelets is crucial for flowering and yield production. However, the regulatory factors involved in this process remain unidentified. In this study, we isolated a WRKY transcription factor gene induced by Cu deficiency, OsWRKY37, and characterized its regulatory role in Cu uptake and transport in rice. OsWRKY37 was highly expressed in rice roots, nodes, leaf vascular bundles, and anthers. Overexpression of OsWRKY37 promoted the uptake and root-to-shoot translocation of Cu in rice under -Cu condition but not under +Cu condition. While mutation of OsWRKY37 significantly decreased Cu concentrations in the stamen, the root-to-shoot translocation and distribution ratio in brown rice affected pollen development, delayed flowering time, decreased fertility, and reduced grain yield under -Cu condition. yeast one-hybrid, transient co-expression and EMSAs, together with in situ RT-PCR and RT-qPCR analysis, showed that OsWRKY37 could directly bind to the upstream promoter region of OsCOPT6 (copper transporter) and OsYSL16 (yellow stripe-like protein) and positively activate their expression levels. Analyses of oscopt6 mutants further validated its important role in Cu uptake in rice. Our study demonstrated that OsWRKY37 acts as a positive regulator involved in the uptake, root-to-shoot translocation, and distribution of Cu through activating the expression of OsCOPT6 and OsYSL16, which is important for pollen development, flowering, fertility, and grain yield in rice under Cu deficient conditions. Our results provide a genetic strategy for improving rice yield under Cu deficient condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/plphys/kiae187 | DOI Listing |
Cryobiology
September 2025
Laboratory of Teaching and Research in Pathology of Reproduction, Center of Biotechnology in Animal Reproduction, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, SP, Brazil. Electronic address:
Sperm capacitation is a critical process for successful fertilization, involving multiple regulated cellular changes. On the other hand, cryopreservation induces membrane changes that can mimic capacitation, potentially leading to misinterpretation of sperm function. Distinguishing true capacitation from cryoinjury remains challenging, as both share surface markers despite involving distinct mechanisms and impacts on fertilization.
View Article and Find Full Text PDFJ Biol Chem
September 2025
Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland. Electronic address:
Cellular membranes maintain distinct lipid compositions, with sterols enriched in the plasma membrane despite their synthesis in the endoplasmic reticulum (ER). This distribution relies on vesicular and non-vesicular transport, the latter facilitated by lipid transfer proteins (LTPs) at membrane contact sites. In yeast, the Lam/Ltc family of LTPs is critical for sterol transport.
View Article and Find Full Text PDFMol Biol Cell
September 2025
Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405.
Motor-driven transport on microtubules is critical for distributing organelles throughout the cell. Most commonly, organelle movement is mediated by cargo adaptors, proteins on the surface of an organelle that directly recruit microtubule-based motors. An alternative mechanism called hitchhiking was recently discovered: some organelles move, not by recruiting the motors directly, but instead by using membrane contact sites to attach to motor-driven vesicles and hitchhike along microtubules.
View Article and Find Full Text PDFJ Med Microbiol
September 2025
Department of Microbiology and Immunology, Shanxi Medical University, Shanxi, PR China.
The distribution of micro-organisms in healthy organisms remains a subject of debate. Emerging evidence revealed the colonization of microbial communities in multiple anatomical sites previously considered sterile under homeostatic conditions. However, the mechanistic relationship between compromised intestinal epithelial barrier integrity and subsequent translocation of gut-resident bacteria into systemic circulation has yet to be comprehensively elucidated.
View Article and Find Full Text PDFHuge phages are widespread in the biosphere, yet their prevalence and ecology in the human gut remain poorly characterized. Here, we report Jug (Jumbo gut) phages with genomes of 360-402 kilobase pairs that comprise ~1.1% of the reads in human gut metagenomes, and are predicted to infect Bacteroides and/or Phocaeicola.
View Article and Find Full Text PDF