98%
921
2 minutes
20
Previous research results of our group showed that Toll-like receptor 4 (TLR4) and nucleolin synergistically mediate respiratory syncytial virus (RSV) infection in human central neuron cells, but the specific mechanism remains unclear. Here we designed and synthesized lentiviruses with TIR (674-815 aa), TLR4 (del 674-815 aa), GAR (645-707 aa), and NCL (del 645-707 aa) domains, and obtained stable overexpression cell lines by drug screening, and subsequently infected RSV at different time points. Laser confocal microscopy and coimmunoprecipitation were used for the observation of co-localization and interaction of TIR/GAR domains. Western blot analysis was used for the detection of p-NF-κB and LC3 protein expression. Real-time PCR was used for the detection of TLR4/NCL mRNA expression. ELISA assay was used to measure IL-6, IL-1β, and TNF-α concentrations and flow cytometric analysis was used for the study of apoptosis. Our results suggest that overexpression of TIR and GAR domains can exacerbate apoptosis and autophagy, and that TIR and GAR domains can synergistically mediate RSV infection and activate the NF-κB signaling pathway, which regulates the secretion of downstream inflammatory factors, such as IL-6, IL-1β, and TNF-α, and ultimately leads to neuronal inflammatory injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmv.29570 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China.
Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.
View Article and Find Full Text PDFGene
September 2025
Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China. Electronic address:
Background: Nasopharyngeal carcinoma (NPC) pathogenesis is multi-factorial, involving synergistic interactions among genetic susceptibility, Epstein-Barr virus (EBV) infection, and environmental exposures. Notably, specific multi-generational families exhibit NPC incidence substantially exceeding both sporadic cases and general genetic susceptibility cohorts, demonstrating Mendelian inheritance patterns. This supports the hypothesis that high penetrance pathogenic variants dominate disease initiation and progression in familial NPC.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. Electronic address:
Ethnopharmacological Relevance: The high mortality rate associated with severe influenza partly results from delayed initiation of antiviral therapy and subsequent cytokine storms. Jiuwei Qianghuo Decoction combined with Zhuye Shigao Decoction (JZF) has been clinically prescribed to prevent the progression to a more severe illness in influenza treatment. However, the precise mode of action and active components have not yet been elucidated.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China. Electronic address:
Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2025
Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation
In this study, we develop a hyaluronic-tannic acid (HA-TA) hydrogel loaded with Cu nanoparticles attach to MXene (MXene@Cu) to explore its potential as a targeted breast cancer treatment. The MXene@Cu nanosheets exhibit activity in depleting glutathione (GSH) and inducing reactive oxygen species (ROS) through the Fenton-like reaction. They can down-regulate the activity of glutathione peroxidase 4 (GPX4), leading to the accumulation of lipid peroxides (LPO) and inducing ferroptosis in tumor cells.
View Article and Find Full Text PDF