A benzothiophene-based fluorescent probe with dual-functional to polarity and cyanide for practical applications in living cells and real water samples.

Spectrochim Acta A Mol Biomol Spectrosc

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China. Electronic address:

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polarity is a significant intracellular environmental parameter associated with cancer, while cyanide (CN) is known to be highly toxic to humans. In this work, we designed a dual-functional fluorescent probe (TPABT) for simultaneous detection of polarity and CN. As a polarity sensor, the probe exhibits NIR emission at 766 nm in 1,4-dioxane (non-polar solvent), whose emission intensity is 71-fold stronger than that in water (polar solvent). Meanwhile, the fluorescence intensity and quantum yield are linearly related to solvent polarity, confirming the polarity response ability of TPABT. For cell polarity detection, low cytotoxicity and polarity sensitivity of probe enable the applications for differentiating cancer cells (HeLa, 4TI) from normal cells (HUV, 3 T3) and monitoring the polarity changes of 4TI cells. As a CN sensor, TPABT displays a turn-on fluorescence at 640 nm upon the addition of CN, with advantages of anti-interference, response in aqueous media and low detection limit (22 nM). Additionally, we further explored the practical applications of TPABT for CN determination in three types of real water samples (drinking water, tap water and lake water) and living cells. Notably, TPABT responses to polarity and CN in two independent fluorescence channels of 766 and 640 nm, respectively, ensuring the dual functions for polarity and CN sensing. Consequently, this multi-responsive fluorescent probe TPABT is promising to diagnose polarity-related diseases and detect CN in real environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124198DOI Listing

Publication Analysis

Top Keywords

fluorescent probe
12
polarity
11
practical applications
8
living cells
8
real water
8
water samples
8
probe tpabt
8
water
6
tpabt
6
probe
5

Similar Publications

Biogenic amines (BAs) are organic nitrogen compounds formed through microbial decarboxylation of amino acids during food spoilage and biological metabolism. Therefore, the development of rapid, selective, and cost-effective detection strategies for BAs is significant for ensuring food safety and quality. In this study, a new dicyanoisophorone-based fluorescent probe (IPC) was developed, capable of fluorescence detection of aliphatic primary amines (e.

View Article and Find Full Text PDF

A KIM-1 targeted ONOO-sensitive NIR fluorescence probe for enhanced acute kidney injury diagnosis.

Talanta

September 2025

School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China. Electronic address:

Acute kidney injury (AKI) is a swiftly advancing condition that may result in kidney failure and pose a significant threat to life. Therefore, diagnosis of AKI is crucial for treating AKI and preventing the worsening of the condition. We developed a near-infrared fluorescent probe, CyO@CD-Ser, designed for the diagnosis of AKI.

View Article and Find Full Text PDF

Viscosity-sensitive fluorescent probes based on the hemicyanine for the organelle-specific visualization during autophagy and ferroptosis.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China. Electronic address: g

The dynamic monitoring of cell death processes remains a significant challenge due to the scarcity of highly sensitive molecular tools. In this study, two hemicyanine-based probes (5a-5b) with D-π-A structures were developed for organelle-specific viscosity monitoring. Both probes exhibited correlation with the Förster-Hoffmann viscosity-dependent relationship (R > 0.

View Article and Find Full Text PDF

The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.

View Article and Find Full Text PDF

Carbon quantum dot-aptamer/MoS nanosheet fluorescent sensor for ultrasensitive, noninvasive cortisol detection.

Anal Bioanal Chem

September 2025

Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.

This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.

View Article and Find Full Text PDF