98%
921
2 minutes
20
Functional near-infrared spectroscopy (fNIRS) can dynamically respond to the relevant state of brain activity based on the hemodynamic information of brain tissue. The cerebral cortex and gray matter are the main regions reflecting brain activity. As they are far from the scalp surface, the accuracy of brain activity detection will be significantly affected by a series of physiological activities. In this paper, an effective algorithm for extracting brain activity information is designed based on the measurement method of dual detectors so as to obtain real brain activity information. The principle of this algorithm is to take the measurement results of short-distance channels as reference signals to eliminate the physiological interference information in the measurement results of long-distance channels. In this paper, the performance of the proposed method is tested using both simulated and measured signals and compared with the extraction results of EEMD-RLS, RLS and fast-ICA, and their extraction effects are quantified by correlation coefficient (R), root-mean-square error (RMSE), and mean absolute error (MAE). The test results show that even under low SNR conditions, the proposed method can still effectively suppress physiological interference and improve the detection accuracy of brain activity signals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10974257 | PMC |
http://dx.doi.org/10.3390/s24061820 | DOI Listing |
Stroke
September 2025
Departments of Radiology and Neurology, Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston (E.L., R.M.P., K.H., E.H.L., E.E.).
Background: Despite promising preclinical results, remote limb ischemic postconditioning efficacy in human stroke treatment remains unclear, with mixed clinical trial outcomes. A potential reason for translational difficulties could be differences in circadian rhythms between nocturnal rodent models and diurnal humans.
Methods: Male C57BL/6J mice were subjected to transient focal cerebral ischemia and then exposed to remote postconditioning during their active or inactive phase and euthanized at 24 hours and 3 days.
J Neurochem
September 2025
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.
View Article and Find Full Text PDFCNS Neurosci Ther
September 2025
Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
Aim: A total of 30% of individuals with epilepsy are resistant to drug treatment. Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) shows promise for treating drug-resistant epilepsy (DRE), but further research is needed to optimize DBS parameters, including stimulation frequency. This study aimed to reveal the optimal frequency for ANT-DBS by testing the real-time effects of various stimulation frequencies on the ANT among patients undergoing stereoelectroencephalography (SEEG) electrode implantation.
View Article and Find Full Text PDFCNS Neurosci Ther
September 2025
College of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
Background: Neurological diseases such as stroke or Parkinson's disease are often accompanied by weakening or loss of proprioception, which seriously affects the motor control ability of the patients. However, proprioception rehabilitation is challenging due to the pain caused by impaired joints and the hard efforts that patients have to make during training. This study investigated the cross-transfer effect of short-term visuomotor training to the untrained wrist from the trained wrist, from both views of behavioral results and brain activity analyses.
View Article and Find Full Text PDFSchizophr Bull
September 2025
Department of Psychology, Faculty of Health & Life Sciences, University of Exeter, Exeter, EX4 4QG, United Kingdom.
Background And Hypothesis: The dysconnectivity hypothesis of schizophrenia suggests that atypical neural communication underlies the disorder's diverse symptoms. Building on this framework, we propose that specific synaptic disturbances within thalamo-cortical circuits contribute to an imbalance in excitation and inhibition, leading to alteration in oscillations. Our study investigates these alterations and explores whether synaptic restoration can remediate neural activity of schizophrenia and align it with healthy patterns.
View Article and Find Full Text PDF