98%
921
2 minutes
20
Volatile accumulation during tomato ripening greatly affects the fruit flavor. In this study, four accessions from each of the three tomato subgroups (BIG, , CER, , and PIM, ) were subjected to a sensory evaluation. The CER subgroup had the highest fruit-flavor score. Using a Headspace solid-phase microextraction/gas chromatography-mass spectrometer (HP-SPME/GC-MS), a volatile database containing 94 volatiles was created. Pentanal accumulated in green fruits and 1-pentanol in red fruits. 1-Octen-3-ol was discovered to underlie the bitterness of green tomatoes, and it was most abundant in PIM green fruits. Phenylethyl alcohol affected the acidity and sweetness of red tomatoes, and it was most abundant in CER red fruits. Branched-chain volatiles were most abundant in PIM and BIG red fruits, while apocarotenoids were most abundant in CER red fruits. These findings suggest that domestication and improvement have influenced volatile content, and apocarotenoids and branched-chain volatiles synergistically mediated aromatic flavors in red fruits. This study provides a metabolic basis for analyses of the molecular mechanisms of fruit-flavor formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969657 | PMC |
http://dx.doi.org/10.3390/foods13060879 | DOI Listing |
Nutr Res
August 2025
Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do, Republic of Korea. Electronic address:
Although fruits and vegetables were studied botanically in previous studies, few have examined their associations with gastrointestinal (GI) cancer risk based on color classification. Color is familiar to the public and translates phytochemical science into dietary guidance. We hypothesized that the intake of fruits and vegetables would be differently associated with GI cancer risk by color.
View Article and Find Full Text PDFPlant Physiol Biochem
August 2025
College of Enology, Northwest A&F University, Yangling, China; Heyang Grape Experiment and Demonstration Station, Northwest A&F University, Heyang, 715300, China; Shaanxi Engineering Research Center for Viti Viniculture, 712100, Yangling, China. Electronic address:
Postharvest deterioration in table grapes, driven by fungal pathogens and oxidative damage, remains a critical concern. This study evaluated the synergistic potential of 24-epibrassinolide (EBR) and Metschnikowia pulcherrima (Y) in preserving the quality of Red Globe grapes. The combined treatment of EBR and Y (YBR) significantly enhanced phenolic biosynthesis, elevating flavonoids and anthocyanin by 27.
View Article and Find Full Text PDFJ Econ Entomol
September 2025
Department of Entomology and Nematology, Southwest Florida Research and Education Center (SWFREC), University of Florida/IFAS, Immokalee, FL, USA.
The Citrus Under Protective Screen is a novel production system implemented to grow citrus free of huanglongbing disease vectored by Asian citrus psyllid, Diaphorina citri. Other significant pests such as mites, scales, thrips, mealybugs, and leafminers, as well as parasitoids and small predators, have been identified from Citrus Under Protective Screen and require management. Chrysomphalus aonidum (L.
View Article and Find Full Text PDFPLoS One
September 2025
Satellite Collections North, Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Malchow/Poel, Germany.
Treatment of seeds with cold atmospheric pressure plasma (CAPP) is in its proof-of-concept phase with regard to its effect on germination and plant growth. To increase the germination of hardseeded red clover (Trifolium pratense L.), seeds are usually scarified, which is time-consuming and labour-intensive.
View Article and Find Full Text PDFPest Manag Sci
September 2025
IRTA, Fruit Production Program, Fruitcentre, Lleida, Catalonia, Spain.
Background: Red leaf blotch (RLB), caused by Polystigma amygdalinum, is a major foliar disease of almond trees in Mediterranean and Middle Eastern regions. While preventive fungicide applications are the main control strategy, cultural practices aimed at reducing pathogen inoculum in leaf litter are gaining relevance. This study evaluated the efficacy of four chemical treatments on fungal biomass and ascospore production in leaf litter and assessed the impact of two cultural practices-urea application and leaf litter removal-on airborne inoculum levels and disease incidence under field conditions.
View Article and Find Full Text PDF