Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Significant research has been conducted on the effects of fertilizers or agents on the sustainable development of agriculture in salinization areas. By contrast, limited consideration has been given to the interactive effects of microbial fertilizer (MF) and salinity on hydraulic properties in secondary salinization soil (SS) and coastal saline soil (CS). An incubation experiment was conducted to investigate the effects of saline soil types, salinity levels (non-saline, low-salinity, and high-salinity soils), and MF amounts (32.89 g kg and 0 g kg) on soil hydraulic properties. Applied MF improved soil water holding capacity in each saline soil compared with that in CK, and SS was higher than CS. Applied MF increased saturated moisture, field capacity, capillary fracture moisture, the wilting coefficient, and the hygroscopic coefficient by 0.02-18.91% in SS, while it was increased by 11.62-181.88% in CS. It increased soil water supply capacity in SS (except for high-salinity soil) and CS by 0.02-14.53% and 0.04-2.34%, respectively, compared with that in CK. Soil available, readily available, and unavailable water were positively correlated with MF, while soil gravity and readily available and unavailable water were positively correlated with salinity in SS. Therefore, a potential fertilization program with MF should be developed to increase hydraulic properties or mitigate the adverse effects of salinity on plants in similar SS or CS areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891606PMC
http://dx.doi.org/10.3390/plants13040473DOI Listing

Publication Analysis

Top Keywords

hydraulic properties
16
soil
12
saline soil
12
interactive effects
8
effects microbial
8
microbial fertilizer
8
salinity hydraulic
8
soil water
8
unavailable water
8
water positively
8

Similar Publications

Carbon particle aggregation for enhanced flow capacitive deionization.

Chem Commun (Camb)

September 2025

The Institute of Technological Sciences, MOE Key Laboratory of Hydraulic Machinery Transients, Wuhan University, Wuhan 430072, China.

Flow electrode capacitive deionization is governed by particle dynamics, which are strongly influenced by surface properties and flow conditions. This study shows that carbon particles with lower surface charge aggregate more rapidly into larger clusters, significantly enhancing desalination rates and achieving current efficiencies above 90%, offering guidance for advancing capacitive deionization systems.

View Article and Find Full Text PDF

Design of a modified model predictive control and composite control strategy for hydraulic turbine regulation system.

ISA Trans

August 2025

Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education, Wuhan 430081, China; Institute of Robotics and Intelligent Systems, Wuhan University of Science and Technology, Wuhan 430081, China; School of Artifitial Intelligence and Automation, Wuhan U

As a critical component in hydropower systems, the Hydraulic Turbine Regulation System (HTRS) exhibits strong coupling characteristics that impose substantial challenges on control system design, necessitating the development of high-performance control strategies. To address the complex control requirements, this paper proposes an improved T-S fuzzy modeling method based on the Luenberger observer theory. It constructs a system model that combines high accuracy and simplicity.

View Article and Find Full Text PDF

Weakly hydrophobic antibiotics leaching in an alpine soil of the Tibetan Plateau in responding to macropore flow.

J Hazard Mater

September 2025

School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China; Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Chengdu, Sichuan 611756, China; Sichuan International Science and Technology Cooperation base for Int

In alpine meadow regions, macropore flow is a critical but inadequately understood pathway for antibiotic transport. The complex relationship between macropore structure, flow dynamics, and solute properties presents a significant research gap. Methodological limitations hinder the accurate characterization of solute migration mechanisms due to complex macropore structures.

View Article and Find Full Text PDF

Urban drainage systems are crucial pathways for the transport of terrestrial microplastics (MPs) to urban rivers. This study investigates the impact of the bed morphology on the transport of MPs at a laboratory-scale 90° confluence between an open channel and a pipeline. A series of flume experiments were conducted to identify the bed morphology and MPs distribution downstream the confluence junction for different confluence discharge ratios (Q/Q) and pipe heights (h).

View Article and Find Full Text PDF

Shrubs are perennial, multi-stemmed woody plants whose adaptation to stress factors allows them to colonise extreme habitats, including high elevations. Accordingly, shrubs are one of the most important growth forms in mountain regions, but their hydraulic properties are poorly understood. We conducted a literature search on the water use strategies of mountain shrubs, focusing on their main hydraulic traits related to water uptake, transport and release, as well as hydraulic limitations in summer and winter.

View Article and Find Full Text PDF