98%
921
2 minutes
20
Background: The X chromosome is often omitted in disease association studies despite containing thousands of genes that may provide insight into well-known sex differences in the risk of Alzheimer's disease (AD).
Objective: To model the expression of X chromosome genes and evaluate their impact on AD risk in a sex-stratified manner.
Methods: Using elastic net, we evaluated multiple modeling strategies in a set of 175 whole blood samples and 126 brain cortex samples, with whole genome sequencing and RNA-seq data. SNPs (MAF > 0.05) within the cis-regulatory window were used to train tissue-specific models of each gene. We apply the best models in both tissues to sex-stratified summary statistics from a meta-analysis of Alzheimer's Disease Genetics Consortium (ADGC) studies to identify AD-related genes on the X chromosome.
Results: Across different model parameters, sample sex, and tissue types, we modeled the expression of 217 genes (95 genes in blood and 135 genes in brain cortex). The average model R2 was 0.12 (range from 0.03 to 0.34). We also compared sex-stratified and sex-combined models on the X chromosome. We further investigated genes that escaped X chromosome inactivation (XCI) to determine if their genetic regulation patterns were distinct. We found ten genes associated with AD at p < 0.05, with only ARMCX6 in female brain cortex (p = 0.008) nearing the significance threshold after adjusting for multiple testing (α = 0.002).
Conclusions: We optimized the expression prediction of X chromosome genes, applied these models to sex-stratified AD GWAS summary statistics, and identified one putative AD risk gene, ARMCX6.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-231075 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
School of Medicine, Chongqing University, Chongqing 400044, China.
Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
School of Medicine and Public Health, University of Wisconsin-Madison, Madison.
Importance: It is unclear whether the duration of amyloid-β (Aβ) pathology is associated with neurodegeneration and whether this depends on the presence of tau.
Objective: To examine the association of longitudinal atrophy with Aβ positron emission tomography (PET)-positivity (Aβ+) and the estimated duration of Aβ+ (Aβ+ duration), controlling for tau-positivity.
Design, Setting, And Participants: Data for this longitudinal cohort study were drawn from the Wisconsin Registry for Alzheimer Prevention and the Wisconsin Alzheimer Disease Research Center Clinical Core Study.
Mol Biol Rep
September 2025
Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.
View Article and Find Full Text PDFNeurochem Res
September 2025
School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
Metabolic synergy between astrocytes and neurons is key to maintaining normal brain function. As the main supporting cells in the brain, astrocytes work closely with neurons through intercellular metabolic synergy networks to jointly regulate energy metabolism, lipid metabolism, synaptic transmission, and cerebral blood flow. This important synergy is often disrupted in neurological diseases such as Alzheimer's disease, Parkinson's disease, and stroke.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2025
División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico.
Rationale: One of the earliest changes associated with Alzheimer's disease (AD) is the loss of catecholaminergic terminals in the cortex and hippocampus originating from the Locus Coeruleus (LC). This decline leads to reduced catecholaminergic neurotransmitters in the hippocampus, affecting synaptic plasticity and spatial memory. However, it is unclear whether restoring catecholaminergic transmission in the terminals from the LC may alleviate the spatial memory deficits associated with AD.
View Article and Find Full Text PDF