Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Atomically precise defect engineering is essential to manipulate the properties of emerging topological quantum materials for practical quantum applications. However, this remains challenging due to the obstacles in modifying the typically complex crystal lattice with atomic precision. Here, we report the atomically precise engineering of the vacancy-localized spin-orbit polarons in a kagome magnetic Weyl semimetal CoSnS, using scanning tunneling microscope. We achieve the step-by-step repair of the selected vacancies, leading to the formation of artificial sulfur vacancies with elaborate geometry. We find that that the bound states localized around these vacancies undergo a symmetry dependent energy shift towards Fermi level with increasing vacancy size. As the vacancy size increases, the localized magnetic moments of spin-orbit polarons become tunable and eventually become itinerantly negative due to spin-orbit coupling in the kagome flat band. These findings provide a platform for engineering atomic quantum states in topological quantum materials at the atomic scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940584PMC
http://dx.doi.org/10.1038/s41467-024-46729-3DOI Listing

Publication Analysis

Top Keywords

atomically precise
12
spin-orbit polarons
12
precise engineering
8
polarons kagome
8
kagome magnetic
8
magnetic weyl
8
weyl semimetal
8
topological quantum
8
quantum materials
8
vacancy size
8

Similar Publications

Van der Waals (vdW) layered materials have gained significant attention owing to their distinctive structure and unique properties. The weak interlayer bonding in vdW layered materials enables guest atom intercalation, allowing precise tuning of their physical and chemical properties. In this work, a ternary compound, NiInSe (x = 0-0.

View Article and Find Full Text PDF

Thermal conductivity of selenium crystals based on machine learning potentials.

Phys Chem Chem Phys

September 2025

State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

Selenium, as an important semiconductor material, exhibits significant potential for understanding lattice dynamics and thermoelectric applications through its thermal transport properties. Conventional empirical potentials are often unable to accurately describe the phonon transport properties of selenium crystals, which limits in-depth understanding of their thermal conduction mechanisms. To address this issue, this study developed a high-precision machine learning potential (MLP), with training datasets generated molecular dynamics simulations.

View Article and Find Full Text PDF

Wafer-scale integration of monolayer MoS residue-free support layer etching and angular strain suppression.

Nanoscale

September 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.

View Article and Find Full Text PDF

Plasmene nanosheets assembled from "plasmonic molecules".

Nanoscale Horiz

September 2025

School of Biomedical Engineering, University of Sydney, Darlington 2008, New South Wales, Australia.

Entropy-driven drying-mediated self-assembly of plasmonic nanocrystals (termed "plasmonic atoms") has emerged as a general strategy for fabricating plasmene nanosheets from a wide range of monodisperse nanocrystals. However, extending this approach to binary systems remains challenging due to the complex nanoscale interactions between dissimilar nanocrystal shapes. Here, we introduce a combined enthalpy- and entropy-driven strategy to achieve an orderly mixed two-dimensional (2D) binary nanoassemblies from complementary reacting polymer-ligated nanocrystals.

View Article and Find Full Text PDF

A machine learning based dual-energy CT elemental decomposition method and its physical-biological impacts on carbon ion therapy.

Med Phys

September 2025

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China.

Background: Dual-energy computed tomography (DECT) enhances material differentiation by leveraging energy-dependent attenuation properties particularly for carbon ion therapy. Accurate estimation of tissue elemental composition via DECT can improve quantification of physical and biological doses.

Objective: This study proposed a novel machine-learning-based DECT (ML-DECT) method to predict the physical density and mass ratios of H, C, N, O, P, and Ca.

View Article and Find Full Text PDF