Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Black phosphorus (BP) field-effect transistors with ultrathin channels exhibit unipolar p-type electrical conduction over a wide range of temperatures and pressures. Herein, we study a device that exhibits mobility up to 100 cm V s and a memory window up to 1.3 μA. Exposure to a supercontinuum white light source reveals that negative photoconductivity (NPC) and positive photoconductivity (PPC) coexist in the same device. Such behavior is attributed to the chemisorbed O molecules, with a minor role of physisorbed HO molecules. The coexistence of NPC and PPC can be exploited in neuromorphic vision sensors, requiring the human eye retina to process the optical signals through alerting and protection (NPC), adaptation (PPC), followed by imaging and processing. Our results open new avenues for the use of BP and other two-dimentional (2D) semiconducting materials in transistors, memories, and neuromorphic vision sensors for advanced applications in robotics, self-driving cars,

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4mh00027gDOI Listing

Publication Analysis

Top Keywords

neuromorphic vision
12
vision sensors
12
positive photoconductivity
8
black phosphorus
8
memory coexistence
4
coexistence negative
4
negative positive
4
photoconductivity black
4
phosphorus field
4
field transistor
4

Similar Publications

Biological nervous systems constitute important sources of inspiration towards computers that are faster, cheaper, and more energy efficient. Neuromorphic disciplines view the brain as a coevolved system, simultaneously optimizing the hardware and the algorithms running on it. There are clear efficiency gains when bringing the computations into a physical substrate, but we presently lack theories to guide efficient implementations.

View Article and Find Full Text PDF

Anisotropic Optoelectronic Synapses in 2D NbGeTe for Direction-Programmable Neuromorphic Perception and Decision-Making.

Adv Mater

September 2025

Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.

Neuromorphic computing presents a promising solution for the von Neumann bottleneck, enabling energy-efficient and intelligent sensing platforms. Although 2D materials are ideal for bioinspired neuromorphic devices, achieving multifunctional synaptic operations with simple configurations and linear weight updates remains challenging. Inspired by biological axons, the in-plane anisotropy of 2D NbGeTe is exploited to develop dual electronic-optical synaptic devices.

View Article and Find Full Text PDF

2D chalcogenide-based memristors have the potential to be used in artificial biological visual systems since their synaptic behavior can be optically and electrically modulated. Furthermore, 2D van der Waals materials such as SnS can be used to integrate multifunctional optoelectronic devices by employing a rational design. Here, the simulation of a human biological visual system is reported by using multifunctional optoelectronic synaptic devices.

View Article and Find Full Text PDF

MSFI: Multi-timescale spatio-temporal features integration in spiking neural networks.

Neural Netw

August 2025

College of Information Science and Technology, Jinan University, Guangzhou, Guangdong, 511436, China. Electronic address:

Dynamic vision sensors (DVS) asynchronously encode the polarity of brightness changes with high temporal resolution and a wide dynamic range, making them ideal for capturing temporal information. Spiking neural networks (SNNs) are well-suited for handling such event streams due to their inherent temporal information processing capability. However, existing SNNs only transmit membrane potential across timesteps, neglecting spatial dependencies and failing to extract complex temporal features.

View Article and Find Full Text PDF

Human action recognition (HAR) is crucial for the development of efficient computer vision, where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks across sensor-processor interfaces. However, the absence of interactions among versatile biomimicking functionalities within a single device, which was developed for specific vision tasks, restricts the computational capacity, practicality, and scalability of in-sensor vision computing. Here, we propose a bioinspired vision sensor composed of a GaN/AlN-based ultrathin quantum-disks-in-nanowires (QD-NWs) array to mimic not only Parvo cells for high-contrast vision and Magno cells for dynamic vision in the human retina but also the synergistic activity between the two cells for in-sensor vision computing.

View Article and Find Full Text PDF