Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently, transparent and flexible surface-enhanced Raman scattering (SERS) substrates have received great interest for direct point-of-care detection of analytes on irregular nonplanar surfaces. In this study, we proposed a simple cost-effective strategy to develop a flexible SERS patch utilizing multibranched sharp spiked gold nanostars (GNS) decorated on a commercially available adhesive Scotch Tape for achieving ultra-high SERS sensitivity. The experimental SERS measurements were correlated with theoretical finite element modeling (FEM), which indicates that the GNS having a 2.5 nm branch tip diameter (GNS-4) exhibits the strongest SERS enhancement. Using rhodamine 6G (R6G) as a model analyte, the SERS performance of the flexible SERS patch exhibited a minimum detection limit of R6G as low as 1 pM. The enhancement factor of the SERS patch with GNS-4 was calculated as 6.2 × 10, which indicates that our flexible SERS substrate has the potential to achieve ultra-high sensitivity. The reproducibility was tested with 30 different spots showing a relative standard deviation (RSD) of SERS intensity of about 5.4%, indicating good reproducibility of the SERS platform. To illustrate the usefulness of the flexible SERS sensor patch, we investigated the detection of a carcinogenic compound crystal violet (CV) on fish scales, which is often used as an effective antifungal agent in the aquaculture industry. The results realized the trace detection of CV with the minimum detection limit as low as 1 pM. We believe that our transparent, and flexible SERS patch based on GNS-4 has potential as a versatile, low-cost platform for real-world SERS sensing applications on nonplanar surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3an02246cDOI Listing

Publication Analysis

Top Keywords

flexible sers
20
sers patch
16
sers
15
patch based
8
gold nanostars
8
sers sensing
8
transparent flexible
8
nonplanar surfaces
8
minimum detection
8
detection limit
8

Similar Publications

Flexible, Transparent, and Microfluidic-Compatible Wafer-Scale Metamaterial Sheets for Dual SEF and SERS Sensing.

ACS Appl Mater Interfaces

September 2025

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.

Integrating surface-enhanced fluorescence (SEF) and surface-enhanced Raman spectroscopy (SERS) into a single probe is a natural step forward for plasmon-enhanced spectroscopy (PES), as SEF enables enhanced fluorescent imaging for fast screening of targets, while SERS allows ultrasensitive trace molecular characterization with specificity. However, many challenges remain, e.g.

View Article and Find Full Text PDF

Detecting low-concentration foodborne viruses in complex samples has long posed a great challenge. Here, we propose a colorimetric enhancement-surface-enhanced Raman scattering (SERS) quantitative dual-mode immunochromatographic assay (ICA), characterized by high flexibility, sensitivity, and stability, which can rapidly and accurately detect viruses in various environments, including field, home, and clinical laboratory settings. A multifunctional SERS nanozyme tag (DSAIA) is customized using dendritic mesoporous SiO as the core, which is densely loaded with AuIr catalytic particles and coated with a layer of highly active 35 nm Au nanoparticles on the exterior, thereby simultaneously achieving monodispersity, strong peroxidase activity, and a high density of efficient SERS hotspots.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) with ultrahigh sensitivity has garnered significant attention for quantitative analysis and chemically specific detection. However, conventional SERS platforms, typically structured by depositing plasmonic micro/nanoparticles onto rigid substrates, face limitations in further advancement and applications. In this study, we present a novel method to prepare a flexible SERS film substrate composed of graphene overlayer (G) atop a self-assembled array of silver micropopcorns (Ag MPs) and a polymethyl methacrylate (PMMA) membrane.

View Article and Find Full Text PDF

Scalable synthesis of self-assembled magneto-plasmonic core-satellite nanoparticles for microfluidic sorting and bioorthogonal sensing of targeted cells.

Colloids Surf B Biointerfaces

August 2025

European Laboratory for non-linear spectroscopy (LENS), Via Nello Carrara 1, Sesto Fiorentino, (FI) 50019, Italy; National Institute of Optics (INO), National Research Council, Via Nello Carrara 1, Sesto Fiorentino, (FI) 50019, Italy.

Multifunctional magneto-plasmonic nanoparticles (MP-NPs) are attracting increasing interest for biomedical applications due to their dual magnetic and optical properties. However, existing synthesis protocols for MP-NPs could be limited by harsh conditions or lengthy, complex procedures. These limitations can hinder the development of nanosystems that work effectively in biological dispersion.

View Article and Find Full Text PDF

CRISPR/Cas13a triggered-DNA walker amplified SERS sensor for ultrasensitive detection of cancer-related exosomal miRNA.

Biosens Bioelectron

August 2025

State Key Laboratory of Flexible Electronics (LoFE), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China. Electronic address:

Accurate quantification of cancer-related miRNA in exosomes offers a promising approach for early and effective cancer diagnosis. However, reliably detecting extremely low-abundance exosomal miRNAs in complex bodily fluids remains a significant challenge. Herein, a CRISPR/Cas13a triggered-DNA walker amplified SERS sensor has been proposed for detection of cancer cell-derived exosomal miRNA-106a.

View Article and Find Full Text PDF