Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pair-annihilation events are ubiquitous in a variety of spatially extended systems and are often studied using computationally expensive simulations. Here we develop an approach in which we simulate the pair-annihilation of spiral wave tips in cardiac models using a computationally efficient particle model. Spiral wave tips are represented as particles with dynamics governed by diffusive behavior and short-ranged attraction. The parameters for diffusion and attraction are obtained by comparing particle motion to the trajectories of spiral wave tips in cardiac models during spiral defect chaos. The particle model reproduces the annihilation rates of the cardiac models and can determine the statistics of spiral wave dynamics, including its mean termination time. We show that increasing the attraction coefficient sharply decreases the mean termination time, making it a possible target for pharmaceutical intervention. Many physical systems exhibit annihilation events during which pairs of objects collide and are removed from the system. These events occur in a number of soft-matter and active-matter systems that exhibit spatiotemporal patterning. For example, topological defects in nematic liquid crystals can develop motile topological defects that annihilate when they meet . Pair-wise annihilation of defects or singularities also plays a role in a number of biological systems. In bacterial biofilms, for instance, imperfect cell alignment results in point-like defects that carry half-integer topological charge and can annihilate in pairs. These topological defects explain the formation of layers and have been proposed as a model for the buckling of biofilms in colonies of nematically ordered cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896354PMC

Publication Analysis

Top Keywords

spiral wave
16
wave tips
12
cardiac models
12
topological defects
12
spiral defect
8
defect chaos
8
tips cardiac
8
particle model
8
termination time
8
systems exhibit
8

Similar Publications

Giant Magnetocaloric Effect in a Honeycomb Spiral Spin-Liquid Candidate.

Adv Sci (Weinh)

August 2025

Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China.

Unlike conventional magnetic states, which lack degeneracy, the spiral spin liquid (SSL) fluctuates among degenerate spiral configurations, with ground-state wave vectors forming a continuous contour or surface in reciprocal space. At low temperatures, the field-induced crossover from the polarized ferromagnetic state to the SSL results in a large entropy increase and decalescence, indicating its potential for magnetic cooling. However, magnetic cooling using a SSL has yet to be reported.

View Article and Find Full Text PDF

Exposures to blasts impair hearing, despite the protection of earplugs. Liraglutide showed therapeutic effects against hearing damage induced by single-day blasts. However, the effect of liraglutide on auditory damage caused by multiday repeated blasts remains unknown.

View Article and Find Full Text PDF

Spiral waves are common self-organized spatiotemporal patterns in nature and experimental systems, playing a particularly crucial role in cardiac tissues and neuronal networks. Traditional spiral waves in period-2 domains typically exhibit defect lines, which can significantly influence spiral wave dynamics and have attracted considerable attention in recent years. The regulation of line defects in spiral waves holds significant implications in various domains, including cardiology and neuroscience.

View Article and Find Full Text PDF

We present an investigation of the dynamics of a scroll wave partially pinned to an inert cylindrical obstacle under electrical forcing in a three-dimensional Belousov-Zhabotinsky excitable medium. The freely rotating part of the scroll wave is forced to drift toward the positive electrode, while the pinned part remains attached to the obstacle, causing the scroll wave filament to elongate and its shape to change over time. Breakups of the elongated filament are also observed before the scroll wave gradually unpins and moves away from the obstacle.

View Article and Find Full Text PDF

In recent years, orbital angular momentum (OAM) beams have shown great potential for applications in laser communication, laser processing, optical imaging, and detection. For free-space optical communication, high-power, high-quality vortex beams with a high signal-to-noise ratio are critical for long-distance communication. Coherent beam combining (CBC) of vortex beams enables the enhancement of power while maintaining high beam quality.

View Article and Find Full Text PDF