Single-cell transcriptomic analysis reveals genome evolution in predatory litostomatean ciliates.

Eur J Protistol

Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China; Suzhou Research Institute, Shandong University, Suzhou 215123, China. Electronic address:

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many ciliated protists prey on other large microbial organisms, including other protists and microscopic metazoans. The ciliate class Litostomatea unites both predatory and endosymbiotic species. The evolution of predation ability in ciliates remains poorly understood, in part, due to a lack of genomic data. To fill this gap, we acquired the transcriptome profiles of six predatory litostomateans using single-cell sequencing technology and investigated their transcriptomic features. Our results show that: (1) in contrast to non-predatory ciliates, the predatory litostomateans have expanded gene families associated with transmembrane activity and reactive oxidative stress response pathways, potentially as a result of cellular behaviors such as fast contraction and extension; (2) the expansion of the calcium-activated BK potassium channel gene family, which hypothetically regulates cell contractility, is an ancient evolutionary event for the class Litostomatea, suggesting a rewired metabolism associated with the hunting behavior of predatory ciliates; and (3) three whole genome duplication (WGD) events have been detected in litostomateans, with genes associated with biosynthetic processes, transmembrane activity, and calcium-activated potassium channel activity being retained during the WGD events. In addition, we explored the evolutionary relationships among 17 ciliate species, including eight litostomateans, and provided a rich foundational dataset for future in-depth phylogenomic studies of Litostomatea. Our comprehensive analyses suggest that the rewired cellular metabolism via expanded gene families and WGD events might be the potential genetic basis for the predation ability of raptorial ciliates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036533PMC
http://dx.doi.org/10.1016/j.ejop.2024.126062DOI Listing

Publication Analysis

Top Keywords

wgd events
12
class litostomatea
8
predation ability
8
predatory litostomateans
8
expanded gene
8
gene families
8
transmembrane activity
8
calcium-activated potassium
8
potassium channel
8
predatory
5

Similar Publications

Chromosome-scale genome assembly of Sauvagesia rhodoleuca (Ochnaceae) provides insights into its genome evolution and demographic history.

DNA Res

September 2025

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Sauvagesia rhodoleuca is an endangered species endemic to southern China. Due to human activities, only six fragmented populations remain in Guangdong and Guangxi. Despite considerable conservation efforts, its demographic history and evolution remain poorly understood, particularly from a genomic perspective.

View Article and Find Full Text PDF

Local adaptation represents a pivotal theme in evolutionary biology. The Opisthopappus genus, comprising Opisthopappus longilobus and O. taihangensis, thrives on the cliffs of the Taihang Mountains.

View Article and Find Full Text PDF

Whole-genome duplications revealed by macronuclear genomes of five rare species of the model ciliates Paramecium.

Sci China Life Sci

August 2025

Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.

Paramecium, a group of ciliates with a long evolutionary history, plays essential roles in freshwater ecosystems and has been model for genetic, cellular, and evolutionary studies for over a century. Despite the valuable contributions of genomic resources such as ParameciumDB, genomic data are still mostly limited to species in and near the P. aurelia group.

View Article and Find Full Text PDF

, native to southern China, is renowned for its therapeutic and nutritional benefits, often called the "king of flavonoids" due to its high dihydromyricetin content. The dried stems, leaves, and shoot tips, known as "vine tea," are consumed as a health beverage and traditional remedy for colds and fever. In this study, we assembled a near-complete reference genome of spanning 555.

View Article and Find Full Text PDF

Universal Stress Proteins (USPs) are widely distributed across various organisms and play a crucial role in survival under stress conditions. As environmental stresses become more severe, understanding the role of USPs in developing stress-resistant plants has gained increasing importance. In this study, we identified 231 USP-coding genes in the genomes of Brassica napus (BnUSP1-BnUSP115), B.

View Article and Find Full Text PDF