Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

, native to southern China, is renowned for its therapeutic and nutritional benefits, often called the "king of flavonoids" due to its high dihydromyricetin content. The dried stems, leaves, and shoot tips, known as "vine tea," are consumed as a health beverage and traditional remedy for colds and fever. In this study, we assembled a near-complete reference genome of spanning 555.42 Mb, where Hi-C-based correction resolved 18 out of its 20 chromosomes into gap-free assemblies. The genome, anchored to 20 chromosomes, comprises 44 contigs with an N50 of 21.93 Mb and 28 scaffolds with an N50 of 30.45 Mb, containing 25,999 protein-coding genes and 62.62% repetitive sequences. The experienced two whole-genome duplication (WGD) events: a whole-genome triplication event shared by the core angiosperms and a WGD event shared with Vitaceae family. Through transcriptome-metabolome integrated analysis, gene was identified as playing a crucial role in the biosynthesis of dihydromyricetin (a flavanonol) in . The gene is essential for converting pentahydroxy flavones to dihydromyricetin within the flavonoid biosynthesis pathway in , as confirmed by molecular docking results. Thus, we postulate that serves as a pivotal regulatory gene in the dihydromyricetin biosynthetic pathway of . These insights offer valuable genetic resources for the molecular breeding of and enhance our comprehension of Vitaceae genomic evolution and flavonoid biosynthesis regulation in medicinal and nutritional plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12375659PMC
http://dx.doi.org/10.3389/fpls.2025.1580779DOI Listing

Publication Analysis

Top Keywords

flavonoid biosynthesis
12
event shared
8
near-complete genome
4
genome assembly
4
assembly insights
4
insights origin
4
origin evolution
4
evolution regulation
4
regulation flavonoid
4
biosynthesis
4

Similar Publications

Erythrina velutina is a tree that thrives in the shallow rocky soils of the dry and hot Caatinga, a unique Brazilian biome. It is rich in specialized metabolites with medicinal properties. Indeed, alkaloids and flavonoids are phytochemical markers of the genus.

View Article and Find Full Text PDF

Secreted frizzled-related protein 4 (sFRP4) plays a fundamental role in the regulation of Wnt signalling, which is crucial for cellular proliferation and differentiation. The sFRP4 has garnered significant interest as a therapeutic target for metabolic diseases and cancer due to its mechanism of action. Although existing sFRP4 modulators show limited specificity and notable off-target effects, our study explores the potential of known bioactive compounds as more selective and less toxic alternatives.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia and associated with severe complications, including cardiovascular diseases, neuropathy, nephropathy, and retinopathy. Although synthetic antidiabetic drugs are available, the side effects and limited long-term effectiveness of these medications highlight the urgent need for safer, more potent alternative therapies. L.

View Article and Find Full Text PDF

Cancer treatment faces challenges like nonselective toxicity and drug resistance, prompting the need for innovative therapies. This study aimed to develop liposomal formulations for co-delivery of empagliflozin and rutin, evaluating their anticancer and antioxidant efficacy. PEGylated empagliflozin-loaded nanoliposomes (Empa-NLs) and empagliflozin-rutin co-loaded nanoliposomes (Empa-Rut NLs) were synthesized using the thin-film hydration technique.

View Article and Find Full Text PDF

Introduction: Peatlands store up to a third of global soil carbon, and in high latitudes their litter inputs are increasing and changing in composition under climate change. Although litter significantly influences peatland carbon and nutrient dynamics by changing the overall lability of peatland organic matter, the physicochemical mechanisms of this impact-and thus its full scope-remain poorly understood.

Methods: We applied multimodal metabolomics (UPLC-HRMS, H NMR) paired with C Stable Isotope-Assisted Metabolomics (SIAM) to track litter carbon and its potential priming effects on both existing soil organic matter and carbon gas emissions.

View Article and Find Full Text PDF