98%
921
2 minutes
20
Many methods have been developed to measure the neutralizing capacity of antibodies to SARS-CoV-2. However, these methods are low throughput and can be difficult to quickly modify in response to emerging variants. Therefore, an experimental system for rapid and easy measurement of the neutralizing capacity of antibodies against various variants is needed. In this study, we developed an experimental system that can efficiently measure the neutralizing capacity of sera by using a GFP-carrying recombinant SARS-CoV-2 with spike proteins of multiple variants (B.1.1, BA.5, or XBB.1.5). For all 3 recombinant chimeric genomes generated, neutralizing antibody titers determined by measuring GFP fluorescence intensity correlated significantly with those calculated from viral RNA levels measured by RT-qPCR in the supernatant of infected cells. Furthermore, neutralizing antibody titers determined by visually assessing GFP fluorescence using microscopy were also significantly correlated with those determined by RT-qPCR. By using this high-throughput method, it is now possible to quickly and easily determine the neutralizing capacity of antibodies against SARS-CoV-2 variants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jviromet.2024.114894 | DOI Listing |
Vet Res Commun
September 2025
Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
Background: Canine parvovirus (CPV) poses a severe threat to canine health, necessitating the development of safer and more effective vaccines. While traditional vaccines carry risks of virulence reversion and environmental contamination, subunit vaccines-especially neutralizing epitope vaccines-offer promising alternatives by eliciting targeted immune responses with enhanced safety.
Methods: We employed bacterial display technology to express 11 overlapping CPV VP2 gene fragments on the periplasmic membrane of E.
A key goal of vaccinology is to train the immune system to combat current pathogens while simultaneously preparing it for future evolved variants. Understanding factors contributing to anticipatory breadth, wherein affinity maturation against an ancestral strain yields neutralization capacity against evolved variants, is therefore of great importance. Here, we investigated the mechanism of anticipatory breadth development in a public antibody family targeting the functionally restricted ACE2 binding site on SARS-CoV-2.
View Article and Find Full Text PDFBrain Behav
September 2025
Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany.
Background: Immune induction under B-cell depletion is complex and far from being fully understood.
Methods: We investigated clinical and immunological responses after dual homologous mRNA vaccination with BNT162b2 and after booster vaccination or infection in 14 B-cell depleted patients with inflammatory central nervous system disease in comparison to 28 healthy controls. Spike-specific IgG were determined using ELISA and neutralizing activity by surrogate assay.
Life Sci
September 2025
Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China. Electronic address:
Aims: To investigate the pathogenic role of Interleukin-11 (IL-11) in chronic kidney disease (CKD) progression and evaluate the therapeutic potential of IL-11 neutralizing antibodies in attenuating renal inflammation and fibrosis.
Materials And Methods: We conducted systematic molecular and cellular analyses to characterize IL-11-mediated signaling pathways in CKD models. The effects of IL-11 on macrophage polarization, cellular transitions, and stress responses were examined.
Aerosol acidity (pH) plays a critical role in atmospheric chemical processes, secondary aerosol formation, and urban air quality. Based on five years of hourly observations (2019-2023) in subtropical Dongguan, this study investigates the variability and thermodynamic regulation of aerosol pH, with a focus on aerosol liquid water content (ALWC), hydrogen ion (H) concentrations, and their interactions. Secondary inorganic aerosols (SIA), including NH, SO, NO and Cl, accounted for 92 ± 4 % of total water-soluble inorganic ions (WSIIs), with sufficient total NH (TNH) and non-volatile cations (NVCs) available to neutralize acidic species.
View Article and Find Full Text PDF