Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genomic rearrangements, encompassing mutational changes in the genome such as insertions, deletions, or inversions, are essential for genetic diversity. These rearrangements are typically orchestrated by enzymes involved in fundamental DNA repair processes such as homologous recombination or in the transposition of foreign genetic material by viruses and mobile genetic elements (MGEs). We report that IS110 insertion sequences, a family of minimal and autonomous MGEs, express a structured non-coding RNA that binds specifically to their encoded recombinase. This bridge RNA contains two internal loops encoding nucleotide stretches that base-pair with the target DNA and donor DNA, which is the IS110 element itself. We demonstrate that the target-binding and donor-binding loops can be independently reprogrammed to direct sequence-specific recombination between two DNA molecules. This modularity enables DNA insertion into genomic target sites as well as programmable DNA excision and inversion. The IS110 bridge system expands the diversity of nucleic acid-guided systems beyond CRISPR and RNA interference, offering a unified mechanism for the three fundamental DNA rearrangements required for genome design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849738PMC
http://dx.doi.org/10.1101/2024.01.24.577089DOI Listing

Publication Analysis

Top Keywords

dna
8
donor dna
8
fundamental dna
8
bridge rnas
4
rnas direct
4
direct modular
4
modular programmable
4
programmable recombination
4
recombination target
4
target donor
4

Similar Publications

Comparative mitogenomics of the eulipotyphlan species (Mammalia, Eulipotyphla) provides novel insights into the molecular evolution of hibernation.

Mitochondrial DNA A DNA Mapp Seq Anal

September 2025

Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.

Hibernation is an elaborate response strategy employed by numerous mammals to survive in cold conditions that involves active suppression of metabolism. Despite the role of mitochondria as energy metabolism centers during hibernation, the adaptive and evolutionary mechanisms of mitochondrial genes in hibernating animals, like hedgehogs in eulipotyphlan species, are not yet fully understood. In this study, we sequenced and assembled mitochondrial genomes of the hibernating four-toed hedgehog () and the non-hibernating Asian house shrew ().

View Article and Find Full Text PDF

Background: The aim of this study was to establish a rat model of premature ovarian failure (POF) with cyclophosphamide (CTX), and explore the molecular basis of POF and the mechanism of Guishen-Erxian Decoction (GSEXD) to improve POF from the perspective of oxidative stress regulation of ovarian granulosa cell (OGC) DNA fragmentation.

Method: The study utilized SD rats to establish a POF model via CTX. Rats were divided into Control, POF group, three GSEXD dosage groups (low, medium, high), and a GSEXD+PI3K agonist group to assess GSEXD's therapeutic effects on oxidative stress, DNA fragmentation and ovarian damage.

View Article and Find Full Text PDF

The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor.

View Article and Find Full Text PDF

Biological sex influences the life course development of blood pressure, systemic arterial hypertension, and hypertension-associated complications through neural, hormonal, renal, and epigenetic mechanisms. Sex hormones influence blood pressure regulation through interaction with several main regulatory systems, including the autonomic nervous system, the renin-angiotensin-aldosterone system, endothelin, and renal mechanisms. The modulation of vascular function by sex hormones varies over the lifespan.

View Article and Find Full Text PDF

Modulating Placental Functionality in Preeclampsia With siRNA Nanocomplexes.

Hypertension

September 2025

Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu (Z.W.).

Background: Early-onset preeclampsia poses significant risks to maternal and fetal health, necessitating a deeper understanding of its molecular mechanisms and effective therapeutic strategies.

Methods: Utilizing data from genome-wide association study and Mendelian randomization analysis, we investigated the relationship between mitochondrial DNA copy number and preeclampsia. Transcriptome sequencing, in vitro experiments, and animal studies were conducted to explore the roles of SENP3 and SETD7 in preeclampsia pathogenesis.

View Article and Find Full Text PDF