Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We compared three sets of highly resolved food webs with and without parasites for a subarctic lake system corresponding to its pelagic and benthic compartments and the whole-lake food web. Key topological food-web metrics were calculated for each set of compartments to explore the role parasites play in food-web topology in these highly contrasting webs. After controlling for effects from differences in web size, we observed similar responses to the addition of parasites in both the pelagic and benthic compartments demonstrated by increases in trophic levels, linkage density, connectance, generality, and vulnerability despite the contrasting composition of free-living and parasitic species between the two compartments. Similar effects on food-web topology can be expected with the inclusion of parasites, regardless of the physical characteristics and taxonomic community compositions of contrasting environments. Additionally, similar increases in key topological metrics were found in the whole-lake food web that combines the pelagic and benthic webs, effects that are comparable to parasite food-web analyses from other systems. These changes in topological metrics are a result of the unique properties of parasites as infectious agents and the links they participate in. Trematodes were key contributors to these results, as these parasites have distinct characteristics in aquatic systems that introduce new link types and increase the food web's generality and vulnerability disproportionate to other parasites. Our analysis highlights the importance of incorporating parasites, especially trophically transmitted parasites, into food webs as they significantly alter key topological metrics and are thus essential for understanding an ecosystem's structure and functioning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907417PMC
http://dx.doi.org/10.1007/s00442-023-05503-wDOI Listing

Publication Analysis

Top Keywords

pelagic benthic
16
food-web topology
12
food web
12
benthic compartments
12
key topological
12
topological metrics
12
parasites
10
subarctic lake
8
food webs
8
whole-lake food
8

Similar Publications

Microbial communities play a crucial role in the functioning of freshwater ecosystems but are continuously threatened by climate change and anthropogenic activities. Elevated temperatures and salinisation are particularly challenging for freshwater habitats, but little is known about how microbial communities respond to the simultaneous exposure to these stressors. Here, we use mesocosm experiments and amplicon sequencing data to investigate the responses of pelagic and benthic microbial communities to temperature and salinity increases, both individually and in combination.

View Article and Find Full Text PDF

Due to climate change, sea ice more commonly retreats over the shelf breaks in the Arctic Ocean, impacting sea ice-pelagic-benthic coupling in the deeper basins. Nitrogen fixation (the reduction of dinitrogen gas to bioavailable ammonia by microorganisms called diazotrophs) is reported from Arctic shelf sediments but is unknown from the Arctic deep sea. We sampled five locations of deep-sea (900-1500 m) surface sediments in the central ice-covered Arctic Ocean to measure potential nitrogen fixation through long-term (> 280 days) stable-isotope (N) incubations and to study diazotroph community composition through amplicon sequencing of the functional marker gene nifH.

View Article and Find Full Text PDF

The Lower Meghna River (LMR), located in one of Bangladesh's most arsenic-contaminated regions, is essential for local fisheries and provides water for drinking, irrigation, and daily use. Consequently, this study investigates arsenic accumulation in ten edible, small indigenous species (SIS) of fish, considering their morphology, habitats, diets, and water and sediment conditions. Samples were analysed across three distinct river segments during three seasons.

View Article and Find Full Text PDF

Macroevolutionary trends in vertebrate morphology fundamentally shape our understanding of marine ecosystems through deep time. Body form influences interactions between organisms and their environment, dictating their locomotor capabilities and ability to hunt/escape from other species. Sharks (Elasmobranchii: Selachii) have been suggested to broadly exhibit two discrete body forms: one 'shallow-bodied' form associated with slow-moving benthic species and a 'deep-bodied' form typified by highly active pelagic taxa.

View Article and Find Full Text PDF

Earth's most complex and biodiverse ecosystems are characterised by high habitat complexity. On coral reefs, habitat complexity is influenced by the diverse morphology and composition of hard corals, shaping reef structure and shelter provision for many species. Various metrics are used to quantify reef complexity, yet, it remains unclear how well these metrics capture ecological functions such as shelter provision.

View Article and Find Full Text PDF