Publications by authors named "Guido Sieber"

Microbial communities play a crucial role in the functioning of freshwater ecosystems but are continuously threatened by climate change and anthropogenic activities. Elevated temperatures and salinisation are particularly challenging for freshwater habitats, but little is known about how microbial communities respond to the simultaneous exposure to these stressors. Here, we use mesocosm experiments and amplicon sequencing data to investigate the responses of pelagic and benthic microbial communities to temperature and salinity increases, both individually and in combination.

View Article and Find Full Text PDF

The discharge of treated wastewater (TWW) into freshwater ecosystems poses a significant impact on microbial communities, particularly protists, which play a crucial role in nutrient cycling and ecosystem stability. While the ecological effects of TWW on microbial diversity have been studied, understanding the functional responses of protist communities remains limited. This study employs metatranscriptomics to unravel the temporal dynamics of protist community functions in response to TWW exposure.

View Article and Find Full Text PDF

Significant progress in high-throughput analytical techniques has paved the way for novel approaches to integrating data sets from different compartments. This study leverages nontarget screening (NTS) via liquid chromatography-high-resolution mass spectrometry (LC-HRMS), a crucial technique for analyzing organic micropollutants and their transformation products, in combination with biological indicators. We propose a combined multivariate data processing framework that integrates LC-HRMS-based NTS data with other high-throughput data sets, exemplified here by 18S V9 rRNA and full-length 16S rRNA gene metabarcoding data sets.

View Article and Find Full Text PDF

The decomposition of organic matter is essential for sustaining the health of freshwater ecosystems by enabling nutrient recycling, sustaining food webs, and shaping habitat conditions, which collectively enhance ecosystem resilience and productivity. Bacteria and fungi play a crucial role in this process by breaking down coarse particulate organic matter (CPOM), such as leaf litter, into nutrients available for other organisms. However, the specific contribution of bacteria and their functional interactions with fungi in freshwater sediments have yet to be thoroughly explored.

View Article and Find Full Text PDF

Microbial predator-prey interactions play a crucial role in aquatic food webs. Bacterivorous protists not only regulate the quantity and biomass of bacterial populations but also profoundly influence the structure of bacterial communities. Consequently, alterations in both the quantity and quality of protist bacterivory can influence the overall structure of aquatic food webs.

View Article and Find Full Text PDF

Wastewater treatment processes can eliminate many pollutants, yet remainder pollutants contain organic compounds and microorganisms released into ecosystems. These remainder pollutants have the potential to adversely impact downstream ecosystem processes, but their presence is currently not being monitored. This study was set out with the aim of investigating the effectiveness and sensitivity of non-target screening of chemical compounds, 18S V9 rRNA gene, and full-length 16S rRNA gene metabarcoding techniques for detecting treated wastewater in receiving waters.

View Article and Find Full Text PDF

Microbial communities in freshwater streams play an essential role in ecosystem functioning via biogeochemical cycling. Yet, the impacts of treated wastewater influx into stream ecosystems on microbial strain diversity remain mostly unexplored. Here, we coupled full-length 16S ribosomal RNA gene Nanopore sequencing and strain-resolved metagenomics to investigate the impact of treated wastewater on a mesocosm system (AquaFlow) run with restored river water.

View Article and Find Full Text PDF

Our capacity to predict trajectories of ecosystem degradation and recovery is limited, especially when impairments are caused by multiple stressors. Recovery may be fast or slow and either complete or partial, sometimes result in novel ecosystem states or even fail completely. Here, we introduce the Asymmetric Response Concept (ARC) that provides a basis for exploring and predicting the pace and magnitude of ecological responses to, and release from, multiple stressors.

View Article and Find Full Text PDF

Here, we analyzed patterns of taxon richness and endemism of freshwater protists in Europe. Even though the significance of physicochemical parameters but also of geographic constraints for protist distribution is documented, it remains unclear where regional areas of high protist diversity are located and whether areas of high taxon richness harbor a high proportion of endemics. Further, patterns may be universal for protists or deviate between taxonomic groups.

View Article and Find Full Text PDF