SELENOK-dependent CD36 palmitoylation regulates microglial functions and Aβ phagocytosis.

Redox Biol

Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China. Elect

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Amyloid-beta (Aβ) is a key factor in the onset and progression of Alzheimer's disease (AD). Selenium (Se) compounds show promise in AD treatment. Here, we revealed that selenoprotein K (SELENOK), a selenoprotein involved in immune regulation and potentially related to AD pathology, plays a critical role in microglial immune response, migration, and phagocytosis. In vivo and in vitro studies corroborated that SELENOK deficiency inhibits microglial Aβ phagocytosis, exacerbating cognitive deficits in 5xFAD mice, which are reversed by SELENOK overexpression. Mechanistically, SELENOK is involved in CD36 palmitoylation through DHHC6, regulating CD36 localization to microglial plasma membranes and thus impacting Aβ phagocytosis. CD36 palmitoylation was reduced in the brains of patients and mice with AD. Se supplementation promoted SELENOK expression and CD36 palmitoylation, enhancing microglial Aβ phagocytosis and mitigating AD progression. We have identified the regulatory mechanisms from Se-dependent selenoproteins to Aβ pathology, providing novel insights into potential therapeutic strategies involving Se and selenoproteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850786PMC
http://dx.doi.org/10.1016/j.redox.2024.103064DOI Listing

Publication Analysis

Top Keywords

cd36 palmitoylation
16
aβ phagocytosis
16
microglial aβ
8
6
microglial
5
phagocytosis
5
selenok
5
selenok-dependent cd36
4
palmitoylation
4
palmitoylation regulates
4

Similar Publications

Reactive oxygen species (ROS) are responsible for the oxidative truncation of polyunsaturated fatty acids (PUFAs). The products of these reactions have been implicated in many diseases such as cancer and atherosclerosis. As increasing attention is directed toward these oxidized phospholipids (oxPLs), higher throughput methods are needed to examine interactions between oxPLs and scavenger receptors in the immune system.

View Article and Find Full Text PDF

S-palmitoylation has emerged as a critical integrator of lipid overload and cardiovascular dysfunction. Disordered lipid metabolism inundates endothelial cells, vascular smooth muscle cells and macrophages with triglyceriderich lipoproteins, oxidized LDL and saturated fatty acids, expanding the intracellular palmitoylCoA pool and perturbing redox balance. Protein Spalmitoylation, the reversible attachment of palmitate to cysteine residues, converts excess palmitoylCoA into broad alterations in signalling and membrane dynamics.

View Article and Find Full Text PDF

Palmitoylation-dependent modulation of CD36 trafficking and signaling integrates lipid uptake with metabolic disease pathogenesis.

Pharmacol Res

August 2025

Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China. Electronic address:

CD36 is a multifunctional lipid transporter that facilitates long-chain fatty acid uptake and orchestrates metabolic signaling in energy-demanding tissues. Recent studies have uncovered site-specific palmitoylation as a crucial post-translational modification that governs CD36 subcellular trafficking, stabilizing its localization within lipid rafts and regulating its endocytic recycling between the plasma membrane, endosomes, and lipid droplets. This dynamic palmitoylation-depalmitoylation cycle enables CD36 to spatially and temporally couple lipid transport with signal transduction in response to nutritional and hormonal cues.

View Article and Find Full Text PDF

Mammals support offspring survival through efficient milk production, ensuring the transfer of essential nutrients and energy. Extracellular vesicles (EVs) released by gut microorganisms function as signalling molecules that influence host physiology. In this study, we observed an association between gut microbiota and lactation performance, with Limosilactobacillus johnsonii showing potential in promoting milk fat synthesis.

View Article and Find Full Text PDF

Inhibiting CD36 palmitoylation improves cardiac function post-infarction by regulating lipid metabolic homeostasis and autophagy.

Nat Commun

July 2025

State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, China.

Alterations in myocardial energy substrate metabolism and mitochondrial injury following myocardial infarction (MI) lead to structural and functional abnormalities of the heart. The fatty acid translocase CD36 (CD36) plays a pivotal role in regulating lipid homeostasis and mitochondrial metabolism. Here, we demonstrate that inhibiting the palmitoylation of CD36 and the resulting alteration in its subcellular localization alleviates lipid metabolism disorders and mitochondrial dysfunction in cardiomyocytes of male mice post-MI.

View Article and Find Full Text PDF