2D Ni-Co bimetallic oxide nanosheets activate persulfate for targeted conversion of bisphenol A in wastewater into polymers.

Environ Int

Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China. Electronic address:

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The selective removal of targeted pollutants from complex wastewater is challenging. Herein, a novel persulfate (PS)-based advanced oxidation system equipped with a series of two-dimensional (2D) bimetallic oxide nanosheets (NSs) catalysts is developed to selectively degrade bisphenol A (BPA) within mixed pollutants via initiating nonradical-induced polymerization. Results indicate that the NiCoO NSs demonstrate the highest catalytic efficiency among all Ni-Co NSs catalysts. Specifically, BPA degradation rate is 47.34, 27.26, and 9.72 times higher than that of 4-chlorophenol, phenol, and 2,4-dichlorophenol in the mixed solution, respectively. The lower oxidative potential of BPA in relation to the other pollutants renders it the primary target for oxidation within the PDS activation system. PDS molecules combine on the surface of NiCoO NSs to form the surface-activated complex, triggering the generation of BPA monomer radicals through H-abstraction or electron transfer. These radicals subsequently polymerize on the surface of the catalyst through coupling reactions. Importantly, this polymerization process can occur under typical aquatic environmental conditions and demonstrates resistance to background matrices like Cl and humic acid due to its inherent nonradical attributes. This study offers valuable insights into the targeted conversion of organic pollutants in wastewater into value-added polymers, contributing to carbon recycle and circular economy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2024.108466DOI Listing

Publication Analysis

Top Keywords

bimetallic oxide
8
oxide nanosheets
8
targeted conversion
8
nss catalysts
8
nicoo nss
8
ni-co bimetallic
4
nanosheets activate
4
activate persulfate
4
persulfate targeted
4
conversion bisphenol
4

Similar Publications

Trimetallic Au-Ag-Cu Joint Doped Hydroxyapatite: Synergistic Photo-Fenton-Like Catalytic Performance Enhancement.

ACS Omega

September 2025

College of Materials and Chemical Engineering, Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, West Anhui University, Lu'an, Anhui 237012, P. R. China.

Photo-Fenton oxidation, as a promising wastewater treatment technology, suffers from double barriers: the sluggish Fenton catalytic rate of transition metal ions and inefficient visible light absorption, both of which severely constrain the performance enhancement of catalytic systems. Therefore, accelerating electron transfer processes and broadening optical absorption spectra have become critical scientific challenges for practical implementation. Herein, a composite catalyst system based on Au-Ag-Cu trimetallic species codoped on hydroxyapatite (HAp) was reported via an ion/ligand impregnation method.

View Article and Find Full Text PDF

Maximizing the exposure of edge sites and achieving sufficient promotion remain arduous tasks for designing efficient bimetallic MoS-based catalysts. Herein, ultrathin CoMoS nanosheets vertically grown on reduced graphene oxide (CoMoS/rGO-DMF) were fabricated by a facile one-pot solvothermal method using dimethylformamide (DMF) as solvent. The vertically aligned structure and good Co promotion endow CoMoS/rGO-DMF with abundant Co-Mo-S active sites and excellent catalytic performance in the hydrodeoxygenation (HDO) reaction.

View Article and Find Full Text PDF

The utilization of plant extracts in combination with various nanomaterials for treating polymicrobial wound infections represents a novel approach in overcoming the problem of antimicrobial resistance through its multi-targeted mechanism of action. The present study investigates the potential of plant extract for the green synthesis of AgZnO bimetallic nanoparticles (BMNPs). The nanoparticles obtained were characterized and the UV-Vis studies demonstrated peaks at 361 and 371 nm which were characteristic of silver and zinc oxide nanoparticles while a size range of 5-15 nm was revealed in the HR TEM studies, and the presence of crystalline ZnO and surface decorated Ag nanoparticles was observed in the diffraction patterns.

View Article and Find Full Text PDF

Caffeic acid is a key indicator of wine quality, but its sensitive and accurate detection remains challenging due to the lack of high-performance sensing materials. Metal/N-doped porous carbon (M/NPC) electrocatalysts with abundant catalytic sites are promising to address this issue. Herein, a FeCo nanoalloy encapsulated in NPC (FeCo@NPC) was designed and synthesized via a "covalent organic framework (COF) adsorption-pyrolysis" strategy.

View Article and Find Full Text PDF

An one-pot method was used to prepare bimetallic nanozymes, with chitosan (CS) and l-tyrosine (L-Tyr) as stabilized dispersed colloidal solutions and a carrier for gold-platinum single atoms (Au-Pt SAs), which exhibited excellent peroxidase activity. A colorimetric method based on CS/L-Tyr/Au-Pt SAs nanozymes was constructed for the colorimetric detection of quercetin (QR) in human serum and orange juice. The synthesized bimetallic nanozymes were characterized by SEM, TEM, HAADF-STEM, FT-IR, XRD and XPS techniques to demonstrate the successful synthesis of CS/L-Tyr/Au-Pt SAs nanozymes.

View Article and Find Full Text PDF