Hierarchical Dendritic Photonic Crystal Beads for Efficient Isolation and Proteomic Analysis of Multiple Cell Types.

Adv Healthc Mater

State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, P. R. China.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cell types with different morphology, and function collaborate to maintain organ function. As such, analyzing proteomic differences and connections between different types of cells forms the foundation for establishing functional connectomes and developing in vitro organoid simulation experiments. However, the efficiency of cell type isolation from organs is limited by time, equipment, and cost. Here, hierarchical dendritic photonic crystal beads (HDPCBs) featuring high-density functional groups via the self-assembly of dendritic mesoporous structure SiO nanoparticles (DM-SiO) and grafting dendrimers onto the surface of dendritic mesoporous photonic crystal beads (DMPCBs) is developed. This platform integrates multitype cell separation with in situ protein cleavage processes. Efficient simultaneous isolation of Kupffer cells and Liver Sinusoidal Endothelial cells (LSECs) from liver, with high specificity and convenient operation in a short separation time are demonstrated. The results reveal 2832 and 3442 unique proteins identified in Kupffer cells and LSECs using only 50 HDPCBs, respectively. 764 and 629 over-expressed proteins associated with the function of Kupffer cells and LSECs are found, respectively. The work offers a new method for efficiently isolating multiple cell types from tissues and downstream proteomic analysis, ultimately facilitating the identification of primary cell compositions and functions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202303213DOI Listing

Publication Analysis

Top Keywords

photonic crystal
12
crystal beads
12
cell types
12
kupffer cells
12
cells lsecs
12
hierarchical dendritic
8
dendritic photonic
8
proteomic analysis
8
multiple cell
8
dendritic mesoporous
8

Similar Publications

[HgX] Linear Group Enabled Ultraviolet Birefringent Crystal RbHgBr with Strong Optical Anisotropy and Wide Bandgap.

Adv Sci (Weinh)

September 2025

Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Ur

Birefringent crystals are pivotal for modern optical modulation technologies, yet developing high-performance birefringent materials with large birefringence (Δn), wide bandgaps, and scalable synthesis remains a significant challenge. Different from the traditional planar [MQ] and distorted [MQ] (n ≥ 4) polyhedral units, a "linear-group" design strategy is proposed, targeting heavy-metal halides with [HgX] (X = halides) coordination modes to exploit their inherent polarizability anisotropy. Through systematic experimental investigations in the ternary A-Hg-X (A = Rb, Cs; X = Br, I) system, six novel Hg-based halides were synthesized.

View Article and Find Full Text PDF

A Theoretical Investigation of Third-Order Optical Susceptibility in Metronidazolium-Picrate Crystal and Its Potential for Quantum Memory Applications.

ACS Omega

September 2025

Laboratório de Modelagem Molecular Aplicada e Simulação (LaMMAS), Universidade Estadual de Goiás, Anápolis, GO 75001-970, Brazil.

In this work, we report a theoretical investigation of the third-order nonlinear optical properties of the metronidazolium-picrate salt. The effects of the crystal environment are accounted for by the Iterative Charge Embedding approach, and the electronic calculations are carried out at the DFT (CAM-B3LYP/6-311++G-(d,p)) level. Furthermore, we use the results to parametrize a cavity Quantum Electrodynamics model for a quantum memory based on the Off-Resonant Cascaded Absorption protocol.

View Article and Find Full Text PDF

Ginseng exosomes are a kind of promising extracellular vesicle containing unique bioactive components. However, the investigation on ginseng-derived exosomes is still in the initial stage. This study developed a photonic crystal-based Bragg scattering coupling electrochemiluminescence (BSC-ECL) biosensor for detection of miRNA396a-3p in exosome-like nanoparticles (GENs) and ginseng exosomes (Gexos).

View Article and Find Full Text PDF

Towards Floquet Chern insulators of light.

Nat Nanotechnol

September 2025

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.

Topological photonics explores photonic systems that exhibit robustness against defects and disorder, enabled by protection from underlying topological phases. These phases are typically realized in linear optical systems and characterized by their intrinsic photonic band structures. Here we experimentally study Floquet Chern insulators in periodically driven nonlinear photonic crystals, where the topological phase is controlled by the polarization and the frequency of the driving field.

View Article and Find Full Text PDF

Tracking phase transitions of tactoids in sulfated cellulose nanocrystals using second harmonic generation microscopy.

Carbohydr Polym

November 2025

Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:

Cellulose nanocrystals (CNCs) have emerged as promising candidates for chiroptical functional materials due to their ability to form cholesteric liquid crystals with tunable periodicity. The quality of the final cholesteric phase is influenced by the nucleation, growth and coalescence mechanism of the initial droplets, known as tactoids. Current research focuses on understanding the size and morphological transformations of these tactoids, to gain deeper insights into their dynamic behavior and, in turn, to better control the final properties of novel photonic materials.

View Article and Find Full Text PDF