98%
921
2 minutes
20
Bacterial growth and metabolic rates are often closely related. However, under antibiotic selection, a paradox in this relationship arises: antibiotic efficacy decreases when bacteria are metabolically dormant, yet antibiotics select for resistant cells that grow fastest during treatment. That is, antibiotic selection counterintuitively favors bacteria with fast growth but slow metabolism. Despite this apparent contradiction, antibiotic resistant cells have historically been characterized primarily in the context of growth, whereas the extent of analogous changes in metabolism is comparatively unknown. Here, we observed that previously evolved antibiotic-resistant strains exhibited a unique relationship between growth and metabolism whereby nutrient utilization became more efficient, regardless of the growth rate. To better understand this unexpected phenomenon, we used a simplified model to simulate bacterial populations adapting to sub-inhibitory antibiotic selection through successive bottlenecking events. Simulations predicted that sub-inhibitory bactericidal antibiotic concentrations could select for enhanced metabolic efficiency, defined based on nutrient utilization: drug-adapted cells are able to achieve the same biomass while utilizing less substrate, even in the absence of treatment. Moreover, simulations predicted that restoring metabolic efficiency would re-sensitize resistant bacteria exhibiting metabolic-dependent resistance; we confirmed this result using adaptive laboratory evolutions of under carbenicillin treatment. Overall, these results indicate that metabolic efficiency is under direct selective pressure during antibiotic treatment and that differences in evolutionary context may determine both the efficacy of different antibiotics and corresponding re-sensitization approaches.IMPORTANCEThe sustained emergence of antibiotic-resistant pathogens combined with the stalled drug discovery pipelines highlights the critical need to better understand the underlying evolution mechanisms of antibiotic resistance. To this end, bacterial growth and metabolic rates are often closely related, and resistant cells have historically been characterized exclusively in the context of growth. However, under antibiotic selection, antibiotics counterintuitively favor cells with fast growth, and slow metabolism. Through an integrated approach of mathematical modeling and experiments, this study thereby addresses the significant knowledge gap of whether antibiotic selection drives changes in metabolism that complement, and/or act independently, of antibiotic resistance phenotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10846238 | PMC |
http://dx.doi.org/10.1128/spectrum.03241-23 | DOI Listing |
PLoS Negl Trop Dis
September 2025
Department of Community and Family Medicine, School of Public Health, University of Zambia, Lusaka, Zambia.
Background: Trachoma is responsible for the blindness or visual impairment of about 1.9 million people and causes about 1.4% of all blindness worldwide.
View Article and Find Full Text PDFJ Infect Dev Ctries
August 2025
Hospital Infection Control Committee, Adana City Training and Research Hospital, Adana, Türkiye.
Introduction: Candida auris is a yeast that has a high mortality rate in critically ill patients and is resistant to many antifungal agents enhancing its clinical importance. Our study identifies the risk factors for C. auris invasive infection, antifungal susceptibility, and outcomes.
View Article and Find Full Text PDFVet Med Sci
September 2025
Department of Pharmacology and Toxicology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh.
The emergence of antimicrobial resistance (AMR) Escherichia coli in poultry farming is a growing global public health concern, particularly in Bangladesh, where the use of antibiotics remains largely unregulated. This study aimed to determine the prevalence and AMR patterns of E. coli isolated from broiler chickens in Sylhet district of Bangladesh and to investigate the network of coexisting resistance traits among the isolates.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Unlabelled: Severe acute pancreatitis (SAP) is characterized by systemic inflammation and intestinal barrier dysfunction and is often associated with gut microbiota dysbiosis. Rifaximin, a gut-specific non-absorbable antibiotic, is known to modulate the gut microbiota. Here, we investigated rifaximin's effects and mechanisms in SAP using murine models and a single-center, open-label, randomized controlled trial (Chinese Clinical Trial Registry: ChiCTR2100049794).
View Article and Find Full Text PDFAnal Chem
September 2025
RUSA-Center for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra 431 004, India.
In this study, a one-pot hydrothermal synthesis method was used to synthesize a novel gold-yttrium trimesic acid metal-organic framework (Au-Y-TMA MOF), demonstrating significant improvements over conventional single-metal MOFs, that is, yttrium trimesic acid (Y-TMA), in both supercapacitor applications and electrochemical antibiotic detection. The X-ray diffraction patterns of Au-Y-TMA confirmed the presence and impact of Au in the Y-TMA matrix, while field emission scanning electron microscopy (FE-SEM) images revealed a heterogeneous combination of gold nanoparticles (AuNPs) and Y-TMA, suggesting a nonuniform distribution and possible interaction. The developed half-cell supercapacitor exhibited a remarkable capacitance value of 1836 F/g at a current density of 5 A/g by galvanostatic charging-discharging (GCD) measurement.
View Article and Find Full Text PDF