Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metabolic syndrome (MetS) as a multifactorial disease is highly prevalent in countries and individuals. Monitoring the conventional risk factors (CRFs) would be a cost-effective strategy to target the increasing prevalence of MetS and the potential of noninvasive CRF for precisely detection of MetS in the early stage remains to be explored. From large-scale multicenter MetS clinical dataset, we discover 15 non-invasive CRFs which have strong relevance with MetS and first propose a broad learning-based approach named Genetic Programming Collaborative-competitive Broad Learning System (GP-CCBLS) with noninvasive CRF for early detection of MetS. The proposed GP-CCBLS model can significantly boost the detection performance and achieve the accuracy of 80.54%. This study supports the potential clinical validity of noninvasive CRF to complement general diagnostic criteria for early detecting the MetS and also illustrates possible strength of broad learning in disease diagnosis comparing with other machine learning approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770709PMC
http://dx.doi.org/10.1016/j.isci.2023.108644DOI Listing

Publication Analysis

Top Keywords

broad learning
12
noninvasive crf
12
metabolic syndrome
8
detection mets
8
mets
7
employing broad
4
learning
4
learning non-invasive
4
non-invasive risk
4
risk factor
4

Similar Publications

Use of artificial intelligence for classification of fractures around the elbow in adults according to the 2018 AO/OTA classification system.

BMC Musculoskelet Disord

September 2025

Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.

Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.

Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.

View Article and Find Full Text PDF

Although dynamical systems models are a powerful tool for analysing microbial ecosystems, challenges in learning these models from complex microbiome datasets and interpreting their outputs limit use. We introduce the Microbial Dynamical Systems Inference Engine 2 (MDSINE2), a Bayesian method that learns compact and interpretable ecosystems-scale dynamical systems models from microbiome timeseries data. Microbial dynamics are modelled as stochastic processes driven by interaction modules, or groups of microbes with similar interaction structure and responses to perturbations, and additionally, noise characteristics of data are modelled.

View Article and Find Full Text PDF

Phenotype-driven approaches identify disease-counteracting compounds by analysing the phenotypic signatures that distinguish diseased from healthy states. Here we introduce PDGrapher, a causally inspired graph neural network model that predicts combinatorial perturbagens (sets of therapeutic targets) capable of reversing disease phenotypes. Unlike methods that learn how perturbations alter phenotypes, PDGrapher solves the inverse problem and predicts the perturbagens needed to achieve a desired response by embedding disease cell states into networks, learning a latent representation of these states, and identifying optimal combinatorial perturbations.

View Article and Find Full Text PDF

Purpose: Early detection of HPV-associated oropharyngeal cancer (HPV+OPSCC), the most common HPV cancer in the United States, could reduce disease-related morbidity and mortality, yet currently, there are no early detection tests. Circulating tumor HPV DNA (ctHPVDNA) is a sensitive and specific biomarker for HPV+OPSCC at diagnosis. It is unknown if ctHPVDNA is detectable prior to diagnosis, and thus it's potential as an early detection test.

View Article and Find Full Text PDF

TissueMosaic: Self-supervised learning of tissue representations enables differential spatial transcriptomics across samples.

Cell Syst

September 2025

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:

Spatial transcriptomics allows for the measurement of gene expression within the native tissue context. However, despite technological advancements, computational methods to link cell states with their microenvironment and compare these relationships across samples and conditions remain limited. To address this, we introduce Tissue Motif-Based Spatial Inference across Conditions (TissueMosaic), a self-supervised convolutional neural network designed to discover and represent tissue architectural motifs from multi-sample spatial transcriptomic datasets.

View Article and Find Full Text PDF