Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The optimal surveillance and management strategies for breast cancer patients receiving anthracycline therapy are limited by our incomplete understanding of the role of biomarkers heralding the onset of cardiotoxicity. The purpose of this study was to determine whether there is a temporal correlation between cardiac biomarkers and subclinical left ventricular dysfunction in breast cancer patients receiving anthracycline chemotherapy. Thirty-one females between 46 and 55 years old with breast cancer treated with anthracycline chemotherapy were prospectively enrolled. Cardiac biomarkers were correlated with echocardiography with speckle tracking at baseline, post-anthracycline therapy, and 6 months post-anthracycline chemotherapy. Subclinical cardiotoxicity was defined as ≥ 10% reduction in global longitudinal strain (GLS). There was a relative reduction in left ventricular ejection fraction (LVEF) ≥ 10% in 5/30 (17%) and 7/27 (26%) patients post-anthracycline therapy and 6 months post-anthracycline therapy, respectively. Subclinical cardiotoxicity was noted in 8/30 (27%) and 10/26 (38%) patients post-anthracycline and 6 months post-anthracycline therapy, respectively. Baseline N-terminal pro B-type natriuretic peptide (NT-proBNP) was the strongest predictor of LVEF (ρ = -0.45; = 0.019), with post-therapy NT-proBNP values illustrating similar predictive value (ρ = -0.40; = 0.038). Interim changes in suppression of tumorigenicity 2 (ST2) and galectin-3 correlated with a 6-month change in LVEF (ρ = -0.48; = 0.012 and ρ = -0.45; = 0.018, for ST2 and galectin-3, respectively). Changes in galectin-3 from baseline to mid-therapy paralleled changes in GLS. NT-proBNP, ST2, and galectin-3 correlate with reduced LVEF among breast cancer patients receiving anthracycline therapy. Additional trials focusing on a cardiac biomarker approach may provide guidance in the early diagnosis and management of anthracycline-induced cardiotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10744645PMC
http://dx.doi.org/10.3390/jpm13121710DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
cancer patients
16
patients receiving
16
post-anthracycline therapy
16
subclinical cardiotoxicity
12
receiving anthracycline
12
months post-anthracycline
12
st2 galectin-3
12
anthracycline therapy
8
cardiac biomarkers
8

Similar Publications

Objective: This study aimed to probe the role of Shenling Baizhu powder (SLBZP) in inhibiting breast cancer (BC) lung metastasis, focusing on epithelial-to-mesenchymal transition (EMT) and ferroptosis.

Methods: BC 4T1 cells were treated with low (3.13 µg/mL) and high (12.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the main causes of cancer-related death in women. The purpose of this study was to evaluate the expression of miR-605-5p in BC and its diagnostic and prognostic value. BC patients and healthy individuals who met the study criteria were included.

View Article and Find Full Text PDF

Noncoding RNA regulatory networks play crucial roles in human breast cancer. The aim of this study was to establish a network containing multi-type RNAs and RBPs in triple-negative breast cancer (TNBC). Differential expression analyses of lncRNAs, miRNAs, and genes were performed using the GEO2R tool.

View Article and Find Full Text PDF

Invasive ductal carcinoma (IDC) is a major type of breast cancer. The utilization of inhibitors targeting histone methyltransferases introduces novel therapeutic avenues for the treatment of cancer. Immunohistochemistry, Western blot, and reverse transcription quantitative polymerase chain reaction experiments were applied to assess the levels of EHMT2 in IDC and adjacent tissues.

View Article and Find Full Text PDF

Nanomedicine-Mediated Therapies to Target Cancer Stem Cells: An Emerging Technology.

Crit Rev Ther Drug Carrier Syst

January 2025

Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.

Cancer stem cells (CSCs) are a category of cancer cells endowed with the ability to renew themselves, undergo unregulated growth, and exhibit a differentiation capacity akin to that of normal stem cells. CSCs have been linked with tumor metastasis and cancer recurrence due to their ability to elude immune monitoring. As a result, targeting CSCs specifically may improve the efficacy of cancer therapy.

View Article and Find Full Text PDF