98%
921
2 minutes
20
Considering the increased anthropogenic emissions of CO into the atmosphere, it is important to develop economic incentives for the use of CO capture methodologies. The conversion of CO into heterocyclic carbonates shows significant potential. However, there is a need for suitable organocatalysts to reach the required efficiency for these reactions. Given this, there has been an increasing focus on the development of organocatalytic systems consisting of a nucleophile and a hydrogen bond donor (HBD) so that CO conversion can occur in ambient conditions. In this work, we evaluated the potential of fluorescent carbon dots (CDs) as catalytic HBDs in the ring-opening reaction of epoxides, which is typically the rate-limiting step of CO conversion reactions into heterocyclic carbonates. The obtained results demonstrated that the CDs had a relevant catalytic effect on the studied model reaction, with a rate constant of 0.2361 ± 0.008 h, a percentage of reactant conversion of 70.8%, and a rate constant enhancement of 32.2%. These results were better than the studied alternative molecular HBDs. Thus, this study demonstrated that CDs have the potential to be used as HBDs and employed in organocatalyzed CO conversion into value-added products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745100 | PMC |
http://dx.doi.org/10.3390/ma16247620 | DOI Listing |
Anal Chim Acta
November 2025
Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of Ministry of Education, Bao
Background: In the contemporary era of rapid digital advancement, information security is closely associated with our daily life. From personal information to state secrets, all domains are intricately linked with information. Consequently, the significance of information security has garnered growing attention from an ever-increasing number of individuals.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:
Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Faculty of Agronomy and Agricultural Sciences, University of Dschang, PO. Box 222, Dschang, Cameroon.
Dissolved organic matter (DOM) plays a key role in grassland carbon biogeochemistry and shows sensitivity to global climate change, particularly nitrogen (N) deposition. We investigated the soil DOM molecular composition by UV-Vis and fluorescence spectroscopy, and FT-ICR MS through a N addition experiment (CK, N5, N10, N20, and N40 [0, 5, 10, 20, and 40 g N m-2 year-1, respectively]) in a desert steppe of northwest China. Moderate N inputs (N5-N20) caused a dose-dependent increase in DOM content (9.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2025
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
Herein, a novel S/N co-doped carbon-based nanozyme (S/N-Fe) with peroxidase-like properties was synthesized by doping thiourea into Fe MOF and introducing g-CN for pyrolysis. Generated by enzymatic cascade with acetylcholinesterase (AChE) involved, HO could react with S/N-Fe to generate reactive oxygen species (ROS). O-Phenylenediamine (OPD) could be catalyzed by ROS, resulting in the production of 2,3-diaminophenazine (DAP) with a fluorescent emission at 564 nm.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2025
Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, China.
A new variety of nitrogen-doped carbon dots (NCDs) was produced using a hydrothermal synthesis method, based on propanedioic acid and barbituric acid as the sources of carbon and nitrogen. The NCDs were analyzed by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Zeta Potential,X-ray Diffraction(XRD),Thermogravimetry-Derivative Thermogravimetry(TG-DTG),Fourier transform infrared spectroscopy (FTIR) and Fluorescence Lifetime. The characterization results indicate that NCDs possess an average diameter of approximately 2.
View Article and Find Full Text PDF