Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although immunotherapy combinations have revolutionised cancer treatment, the rapid screening of effective and optimal therapies from large numbers of candidate combinations, as well as exploring subgroup efficacy, remains challenging. This necessitates innovative, integrated, and efficient trial designs. In this study, we extend the MIDAS design to include subgroup exploration and propose an enhanced Bayesian information borrowing platform design called MIDAS-2. MIDAS-2 enables quick and continuous screening of promising combination strategies and exploration of their subgroup effects within a unified platform design framework. We use a regression model to characterize the efficacy pattern in subgroups. Information borrowing is applied through Bayesian hierarchical modelling to improve trial efficiency considering the limited sample size in subgroups. Time trend calibration is also employed to avoid potential baseline drifts. Simulation results demonstrate that MIDAS-2 yields high probabilities for identifying the effective drug combinations as well as promising subgroups, facilitating appropriate selection of the best treatments for each subgroup. The proposed design is robust against small time trend drifts, and the type I error is successfully controlled after calibration when a large drift is expected. Overall, MIDAS-2 provides an adaptive drug screening and subgroup exploring framework to accelerate immunotherapy development in an efficient, accurate, and integrated fashion.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10543406.2023.2292211DOI Listing

Publication Analysis

Top Keywords

platform design
12
enhanced bayesian
8
immunotherapy combinations
8
subgroup efficacy
8
combinations well
8
time trend
8
subgroup
6
midas-2
5
design
5
midas-2 enhanced
4

Similar Publications

Background: The ability to access and evaluate online health information is essential for young adults to manage their physical and mental well-being. With the growing integration of the internet, mobile technology, and social media, young adults (aged 18-30 years) are increasingly turning to digital platforms for health-related content. Despite this trend, there remains a lack of systematic insights into their specific behaviors, preferences, and needs when seeking health information online.

View Article and Find Full Text PDF

Programmable Dual-Phase Electrochemical Biosensor Combines Homogeneous CRISPR/Cas12a Activation with Interfacial Poly-G Signaling for miRNA-21 Detection.

Anal Chem

September 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.

Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.

View Article and Find Full Text PDF

Background: The study aimed to adapt a stress and well-being intervention delivered via a mobile health (mHealth) app for Latinx Millennial caregivers. This demographic, born between 1981 and 1996, represents a significant portion of caregivers in the United States, with unique challenges due to higher mental distress and poorer physical health compared to non-caregivers. Latinx Millennial caregivers face additional barriers, including higher uninsured rates and increased caregiving burdens.

View Article and Find Full Text PDF

NU-1000/Cu Nanocomposite-Immobilized Organophosphate Hydrolase for the Cascade Conversion of Methyl Parathion to 4-Aminophenol.

Langmuir

September 2025

State Key Laboratory of Synthetic Biology, School of Synthetic Biology and Biomanufacturing, Frontiers Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.

Effective degradation and detoxification of the highly toxic organophosphate pesticide methyl parathion (MP) are important for pollution treatment and sustainable development. Enzymatic hydrolysis of MP by organophosphate hydrolase (OPH) is an effective way. However, hydrolytic product 4-nitrophenol (4-NP) remains environmentally hazardous.

View Article and Find Full Text PDF

Pax-5a gene, as a nucleic acid biomarker closely associated with B-cell acute lymphoblastic leukemia (B-ALL), holds significant potential for early disease diagnosis. In this study, we developed a highly accurate and efficient "on-super on-off" photoelectrochemical (PEC) biosensor based on a dual-photoelectrode heterojunction system integrated with a multisphere cascade DNA amplification strategy. The designed heterojunction dual-photoelectrode platform, comprising a InO/CdS photoanode (on state) and an in situ-formed MIL-68(In)/InO (MIO) photocathode, effectively extends the electron-hole transport pathway, enhances photogenerated charge separation, and produces high-amplitude signal output (super on state), thereby providing a robust baseline for signal transduction.

View Article and Find Full Text PDF