98%
921
2 minutes
20
Designing and synthesizing fullerene bisadducts with a higher-lying conduction band minimum is promising to further improve the device performance of tin-based perovskite solar cells (TPSCs). However, the commonly obtained fullerene bisadduct products are isomeric mixtures and require complicated separation. Moreover, the isomeric mixtures are prone to resulting in energy alignment disorders, interfacial charge loss, and limited device performance improvement. Herein, we synthesized single-isomer C- and C-based diethylmalonate functionalized bisadducts (CBB and CBB) by utilizing the steric-hindrance-assisted strategy and determined all molecular structures involved by single crystal diffraction. Meanwhile, we found that the different solvents used for processing the fullerene bisadducts can effectively regulate the molecular packing in their films. The dense and amorphous fullerene bisadduct films prepared by using anisole exhibited the highest electron mobility. Finally, CBB- and CBB-based TPSCs showed impressive efficiencies up to 14.51 and 14.28%, respectively. These devices also exhibited excellent long-term stability. This work highlights the importance of developing strategies to synthesize single-isomer fullerene bisadducts and regulate their molecular packing to improve TPSCs' performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c10515 | DOI Listing |
J Fluoresc
June 2025
Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, 41400, Türkiye.
The direct use of low-energy red light for photochemical processes is attractive from a synthetic perspective but challenging to implement in practice. BODIPY-based photosensitizers (PSs) show considerable promise in this area due to their tunable photophysical properties. This study aims to explore the use of mono- and bis-adducts of heavy atom-free NI-BODIPY-fullerene triads, which strongly absorb red light in the 560 to 660 nm range, in red light-irradiated photocatalytic reactions.
View Article and Find Full Text PDFChem Sci
January 2025
Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
Although fullerene bisadducts are promising electron-transporting materials for tin halide perovskite solar cells, they are generally synthesized as a mixture of isomeric products that require a complicated separation process. Here, we introduce a phenylene-bridged bis(pyrrolidino)fullerene, Bis-PC, which forms only a single isomer due to geometrical restriction. When used in a tin perovskite solar cell with a PEAFASnI (PEA: phenylethylammonium and FA: formamidinium) light absorption layer, the resulting open-circuit voltage ( ) was 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2025
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.
The advancement of tin-based perovskite solar cells (TPSCs) has been severely hindered by the poor controllability of perovskite crystal growth and the energy level mismatch between the perovskite and fullerene-based electron transport layer (ETL). Here, we synthesized three cis-configured pyridyl-substituted fulleropyrrolidines (PPF), specifically 2-pyridyl (PPF2), 3-pyridyl (PPF3), and 4-pyridyl (PPF4), and utilized them as precursor additives to regulate the crystallization kinetics during film formation. The spatial distance between the two pyridine groups in PPF2, PPF3, and PPF4 increases sequentially, enabling PPF4 to interact with more perovskite colloidal particles.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
[2]Rotaxanes offer unique opportunities for studying and modulating charge separation and energy transfer, because the mechanical bond allows the robust, yet spatially dynamic tethering of photoactive groups. In this work, we synthesized [2]rotaxane triads comprising a central (aza)[10]CPP⊃C bis-adduct complex and two zinc porphyrin stoppers to address how the movable nanohoop affects light-induced charge separation and energy transfer between the rotaxane subcomponents. We found that neither the parent nanohoop [10]CPP nor its electron-deficient analogue aza[10]CPP actively participate in charge separation.
View Article and Find Full Text PDFBeilstein J Org Chem
May 2024
TARA Center, University of Tsukuba, Tsukuba 305-8577, Japan.
The addition reaction of C with silylene , a silicon analog of carbene, yielded the corresponding bis-adduct . The structure of was determined by single-crystal X-ray structure analysis, representing the first example of a crystal structure of a silirane (silacyclopropane) derivative of fullerenes. Electrochemical measurements confirmed that the redox potentials of are shifted cathodically compared to those of the parent mono-adduct .
View Article and Find Full Text PDF