Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It is well known that adenosine and its phosphate derivatives play a crucial role in biological phenomena such as apoptosis and cell signaling and act as the energy currency of the cell. Although their interactions with various proteins and enzymes have been described, the focus of this work is to demonstrate the effect of the phosphate group on the activity and stability of the native heme metalloprotein cytochrome c (Cyt c), which is important from both biological and industrial aspects. In situ and in silico characterizations are used to correlate the relationship between the binding affinity of adenosine and its phosphate groups with unfolding behavior, corresponding peroxidase activities, and stability factors. Interaction of adenosine (ADN), adenosine monophosphate (AMP), adenosine 5'-diphosphate (ADP), and adenosine 5'-triphosphate (ATP) with Cyt c increases peroxidase-like activity by up to 1.8-6.5-fold compared to native Cyt c. This activity is significantly maintained even after multiple stress conditions such as oxidative stress and the presence of a chaotropic agent such as guanidine hydrochloride (GuHCl). With binding affinities on the order of ADN < AMP < ADP < ATP, adenosine derivatives were found to stabilize Cyt c by varying the secondary structural features of the protein. Thus, in addition to being a fundamental study, the current work also proposes a way of stabilizing protein systems to be used for real-time biocatalytic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788901PMC
http://dx.doi.org/10.1021/acs.jpcb.3c05996DOI Listing

Publication Analysis

Top Keywords

adenosine derivatives
8
activity stability
8
phosphate groups
8
adenosine phosphate
8
adenosine
7
suitability adenosine
4
derivatives improving
4
activity
4
improving activity
4
stability cytochrome
4

Similar Publications

Diabetic nephropathy (DN) is a major complication of diabetes, imposing substantial socioeconomic and public health challenges. N6-methyladenosine (m6A) modification, a prevalent epigenetic mechanism, influences cellular processes and disease progression. Wilms' tumor 1-associating protein (WTAP), an m6A methyltransferase subunit, was investigated for its role in DN.

View Article and Find Full Text PDF

Heat shock protein family A member 4-like (HSPA4L) has been shown to be overexpressed in osteoarthritis (OA) patients, but its role in OA process still unknown. Chondrocytes were stimulated with interleukin-1β (IL-1β) to mimic OA cell model in vitro, and rat was injected with monosodium iodoacetate (MIA) to construct OA rat model in vivo. The expression of HSPA4L, methyltransferase-like 3 (METTL3) and extracellular matrix (ECM)-related markers was examined by qRT-PCR or western blot.

View Article and Find Full Text PDF

Although traditional immunogenic cell death (ICD) inducers generate vaccines (ISV) to potentiate antiprogrammed cell death ligand 1 (anti-PDL1) antibodies therapy, their efficacy remains limited. This limitation may be attributed to the physical barrier created by extracellular matrix (ECM) and immunosuppressive metabolic barrier mediated by adenosine. Here, we report an oncolytic polymer (OP), a well-designed ε-polylysine derivative with ICD-inducing capacity, which can simultaneously facilitate the release of endogenous ECM-degrading enzyme, Cathepsin B.

View Article and Find Full Text PDF

Parallel syntheses and their throughput capabilities are powerful tools for the rapid generation of molecule libraries, making them highly beneficial for accelerating hit identification in early-stage drug discovery. Utilizing chemical spaces and virtual libraries enhances time and cost efficiency, enabling the faster exploitation of chemically diverse compounds. In this study, a parallel synthesis method for rapidly generating a 5'-amino-5'-deoxy adenosine-based amide and sulfonamide library of 42 compounds is described with high yields and purity, which is economical and ecological due to the reduced requirements for extensive purification.

View Article and Find Full Text PDF

Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.

View Article and Find Full Text PDF