Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glycosylation is closely related to cellular metabolism and disease progression. In particular, glycan levels in cancer cells and tissues increase during cancer progression. This upregulation of glycosylation in cancer cells may provide a basis for the development of new biomarkers for the targeting and diagnosis of specific cancers. Here, they developed a detection technology for pancreatic cancer cell-derived small extracellular vesicles (PC-sEVs) based on lectin-glycan interactions. Lectins specific for sialic acids are conjugated to Janus nanoparticles to induce interactions with PC-sEVs in a dielectrophoretic (DEP) system. PC-sEVs are selectively bound to the lectin-conjugated Janus nanoparticles (lectin-JNPs) with an affinity comparable to that of conventionally used carbohydrate antigen 19-9 (CA19-9) antibodies. Furthermore, sEVs-bound Lectin-JNPs (sEVs-Lec-JNPs) are manipulated between two electrodes to which an AC signal is applied for DEP capture. In addition, the proposed DEP system can be used to trap the sEVs-Lec-JNP on the electrodes. Their results, which are confirmed by lectin-JNPs using the proposed DEP system followed by target gene analysis, provide a basis for the development of a new early diagnostic marker based on the glycan characteristics of PC-sEVs. In turn, these novel detection methods could overcome the shortcomings of commercially available pancreatic cancer detection techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202302313DOI Listing

Publication Analysis

Top Keywords

janus nanoparticles
12
dep system
12
cancer cells
8
provide basis
8
basis development
8
pancreatic cancer
8
proposed dep
8
cancer
5
dielectrophoretic capture
4
capture cancer-derived
4

Similar Publications

CuCo-Layered Double Hydroxide Nanosheets Grown on Hierarchical Carbonized Wood as Bifunctional Electrode for Supercapacitor and Hydrogen Evolution Reaction.

Adv Sci (Weinh)

September 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.

View Article and Find Full Text PDF

Self-Propelled Magnetic Micromotor-Functionalized DNA Tile System for Autonomous Capture of Circulating Tumor Cells in Clinical Diagnostics.

Adv Sci (Weinh)

September 2025

Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.

Circulating tumor cells (CTCs) carry intact tumor molecular information, making them invaluable for personalized cancer monitoring. However, conventional capture methods, relying on passive diffusion, suffer from low efficiency due to insufficient collision frequency, severely limiting clinical utility. Herein, a magnetic micromotor-functionalized DNA-array hunter (MMDA hunter) is developed by integrating enzyme-propelled micromotors, magnetic nanoparticles, and nucleic acid aptamers into distinct functional partitions of a DNA tile self-assembly structure.

View Article and Find Full Text PDF

Solid lipid nanoparticles in imaging, diagnostics and theranostics: A review of a decade of innovations and clinical applications.

Colloids Surf B Biointerfaces

September 2025

Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA. Electronic address:

The clinical demand for safer, more precise, and functionally versatile imaging tools has intensified with the increasing complexity of disease diagnosis and management. Despite major strides in imaging technologies such as MRI, CT, USG, and PET/SPECT, many modalities are grappled by issues including low specificity, high systemic toxicity of contrast agents, and limited ability to provide real-time functional data. Dreaded by these shortcomings, nanotechnology-based approaches such as liposomes, quantum dots (QDs), polymeric nanoparticles (NPs), gold NPs, lipid NPs, and metallic NPs have emerged as promising alternatives.

View Article and Find Full Text PDF

Strategic Timing of Gene Silencing: Cellular Kinetics-Based Administration of siRNA for Optimized Photothermal Cancer Treatment.

Adv Sci (Weinh)

September 2025

Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China.

Heat shock protein 70 (HSP70) represents a critical barrier to effective mild-temperature photothermal therapy (MPTT), limiting its clinical utility in aggressive cancers like triple-negative breast cancer (TNBC). While small interfering RNA (siRNA)-mediated HSP70 suppression offers a promising solution, optimal timing for this therapeutic combination remains unexplored. Here, it is demonstrated that precisely timed administration significantly enhances MPTT efficacy through systematic temporal characterization of HSP70 expression dynamics.

View Article and Find Full Text PDF

The polysulfide shuttling and sluggish sulfur redox kinetics hinder the commercialization of lithium-sulfur (Li-S) batteries. Herein, the fabrication of phosphorus (P)-doped iron telluride (FeTe) nanoparticles with engineered Te vacancies anchored on nitrogen (N)-doped carbon (C) (P-FeTe@NC) is presented as a multifunctional sulfur host. Theoretical and experimental analyses show that Te vacancies create electron-deficient Fe sites, which chemically anchor polysulfides through enhanced Fe─S covalent interactions.

View Article and Find Full Text PDF