Tandem gene duplications contributed to high-level azole resistance in a rapidly expanding Candida tropicalis population.

Nat Commun

Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China. cjtcxia

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Invasive diseases caused by the globally distributed commensal yeast Candida tropicalis are associated with mortality rates of greater than 50%. Notable increases of azole resistance have been observed in this species, particularly within Asia-Pacific regions. Here, we carried out a genetic population study on 1571 global C. tropicalis isolates using multilocus sequence typing (MLST). In addition, whole-genome sequencing (WGS) analysis was conducted on 629 of these strains, comprising 448 clinical invasive strains obtained in this study and 181 genomes sourced from public databases. We found that MLST clade 4 is the predominant azole-resistant clone. WGS analyses demonstrated that dramatically increasing rates of azole resistance are associated with a rapid expansion of cluster AZR, a sublineage of clade 4. Cluster AZR isolates exhibited a distinct high-level azole resistance, which was induced by tandem duplications of the ERG11 gene allele. Ty3/gypsy-like retrotransposons were found to be highly enriched in this population. The alarming expansion of C. tropicalis cluster AZR population underscores the urgent need for strategies against growing threats of antifungal resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724272PMC
http://dx.doi.org/10.1038/s41467-023-43380-2DOI Listing

Publication Analysis

Top Keywords

azole resistance
16
cluster azr
12
high-level azole
8
candida tropicalis
8
resistance
5
tandem gene
4
gene duplications
4
duplications contributed
4
contributed high-level
4
azole
4

Similar Publications

Shortawn foxtail (Alopecurus aequalis Sobol.) is a challenging weed species to manage in wheat production systems globally. In prior research, we identified a field population of A.

View Article and Find Full Text PDF

Molecular characterization of Spodoptera frugiperda nose resistant to fluoxetine protein 6 and its putative involvement in tolerance to cyantraniliprole.

Pestic Biochem Physiol

November 2025

College of Plant Protection, Yangzhou University, Yangzhou 225009, China; Jiangsu Province Engineering Research Center of Green Pesticides, Yangzhou University, Yangzhou 225009, China. Electronic address:

Spodoptera frugiperda (FAW) is a notorious polyphagous pest that has developed resistance to various insecticides including diamide insecticides. Our previous study established a FAW cyantraniliprole-resistant (SfCYAN-R) strain by laboratory resistance selection of susceptible strain (SfCYAN-S), however, the potential resistance mechanisms of FAW to cyantraniliprole remain unclear. In this study, SfNrf6 encoding nose resistant to fluoxetine (Nrf) protein 6 was identified to be upregulated in SfCYAN-R strain compared with SfCYAN-S strain based on RNA-Seq data and RT-qPCR.

View Article and Find Full Text PDF

Comparison of the toxicity and pharmacological effects of two insecticides against the Asian corn borer, Ostrinia furnacalis.

Pestic Biochem Physiol

November 2025

Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China. Electronic address:

The Asian Corn Borer (ACB), Ostrinia furnacalis (Guenée) is a devastating pest of maize, causing significant yield and economic losses in Asia. GABA receptor inhibitors have served as effective tools for controlling ACB larvae over the past several decades. However, the toxicity levels and pharmacological properties of two insecticides, fluxametamide and fipronil against the ACB are still unclear.

View Article and Find Full Text PDF

Sensitivity assessment of 300 Cercospora beticola isolates collected from North Greece revealed that 38 % of the population was highly resistant to at least one of the demethylase inhibitors (DMIs) difenoconazole, epoxiconazole and flutriafol. Resistance factors greater than 50, 100 and 100 were calculated for the most resistant C. beticola isolates to flutriafol, epoxiconazole and difenoconazole, respectively.

View Article and Find Full Text PDF

Agrochemical fungicides as environmental drivers of antifungal resistance.

Sci Total Environ

September 2025

Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging a

Once neglected, the debate on antifungal drug resistance has increased due to the emergence of antifungal resistant strains. Several factors are associated with the increase in resistance rates, and the use of fungicides in agricultural practice is probably an important cause. This review aimed to summarize studies performed with fungicides, which could show the correlation between the use of these agrochemicals and the development of cross-resistance to clinical antifungals in human/animal pathogenic fungi.

View Article and Find Full Text PDF