Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The hypothesis of N-methyl-D-aspartate receptor (NMDAR) dysfunction for cognitive impairment in schizophrenia constitutes the theoretical basis for the translational application of NMDAR co-agonist D-serine or its analogs. However, the cellular mechanism underlying the therapeutic effect of D-serine remains unclear. In this study, we utilize a mouse neurodevelopmental model for schizophrenia that mimics prenatal pathogenesis and exhibits hypoexcitability of parvalbumin-positive (PV) neurons, as well as PV-preferential NMDAR dysfunction. We find that D-serine restores excitation/inhibition balance by reconstituting both synaptic and intrinsic inhibitory control of cingulate pyramidal neurons through facilitating PV excitability and activating small-conductance Ca-activated K (SK) channels in pyramidal neurons, respectively. Either amplifying inhibitory drive via directly strengthening PV neuron activity or inhibiting pyramidal excitability via activating SK channels is sufficient to improve cognitive function in this model. These findings unveil a dual mechanism for how D-serine improves cognitive function in this model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10716516PMC
http://dx.doi.org/10.1038/s41467-023-43930-8DOI Listing

Publication Analysis

Top Keywords

pyramidal neurons
12
synaptic intrinsic
8
intrinsic inhibitory
8
inhibitory control
8
model schizophrenia
8
nmdar dysfunction
8
excitability activating
8
cognitive function
8
function model
8
d-serine
5

Similar Publications

Excitatory glycine receptors control ventral hippocampus synaptic plasticity and anxiety-related behaviors.

Proc Natl Acad Sci U S A

September 2025

Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.

Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.

View Article and Find Full Text PDF

Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.

View Article and Find Full Text PDF

Rostro-caudal TMS mapping of immediate transcranial evoked potentials reveals a pericentral crescendo-decrescendo pattern.

Neuroimage

September 2025

Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark, Kettegård Allé 30, 2650 Hvidovre, Denmark; Institute of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N,

Background: We recently demonstrated that single-pulse TMS of the primary sensorimotor hand area (SM1) elicits an immediate transcranial evoked potential (iTEP). This iTEP response appears within 2-8 ms post-TMS, featuring high-frequency peaks superimposed on a slow positive wave. Here, we used a linear TMS-EEG mapping approach to characterize the rostro-caudal iTEP expression and compared it to that of motor-evoked potentials (MEPs).

View Article and Find Full Text PDF

The claustrum (CLA) is a thin and elongated brain structure that is located between the insula and lateral striatum and is implicated in a wide range of behaviors. It is characterized by its extensive synaptic connectivity with multiple cortical regions. While CLA projection neurons are glutamatergic, several studies have shown an inhibitory impact of CLA on its cortical targets, suggesting the involvement of inhibitory cortical interneurons.

View Article and Find Full Text PDF

Aging-related adaptations of metabotropic glutamate receptors within the CA3 region of the rat hippocampus.

Neurobiol Aging

September 2025

Departamento de Farmacobiología. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 14330, Mexico. Electronic address:

The physiological decline associated with aging is often accompanied by a progressive deterioration in cognitive processing abilities driven by a series of cellular dysfunctions that remain poorly understood. In the hippocampus, a critical area for learning and memory, aging affects the functional expression of ionotropic and metabotropic receptors, including the metabotropic glutamate receptors (mGluRs). mGluRs play a critical role in multiple cellular functions, including modulation of ion channels and intrinsic excitability, synaptic transmission, and induction of synaptic plasticity, processes considered part of the cellular substrates for learning and memory.

View Article and Find Full Text PDF