Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photooxidative coupling of benzylic amines using naturally abundant O as an oxidant under visible light irradiation is an alternative green approach to synthesis imines and is of both fundamental and practical significance. We investigated the photophysical properties of flavin (FL) that is a naturally available sensitizer and its derivatives, 9-bromoflavin (MB-FL), 7,8-dibromoflavin (DB-FL) and 10-phenylflavin (Ph-FL), as well as the performance of these FL-based sensitizers (FLPSs) in the photooxidative coupling of benzylic amines to imines combining experimental and theoretical efforts. We showed that chemical functionalization with Br and phenyl effectively improves the photophysical properties of these FLPSs, in terms of absorption in the visible light range, singlet oxygen quantum yields, triplet lifetime, Apart from nearly quantitative selectivity for the production of imines, the performance of DB-FL is superior to those of other FLPSs, and it is among the best photocatalysts for imine synthesis. Specifically, 0.5 mol% DB-FL is capable of converting 91% of 0.2 mmol benzylamine and more than 80% of 0.2 mmol fluorobenzylic amine derivatives into their corresponding imines in 5 h batch runs. Mechanistic investigation finely explained the observed photophysical properties of FLPSs and highlighted the dominant role of electron transfer in FLPS sensitized coupling of benzylic amines to imines. This work not only helps to understand the pathways for photocatalysis with FLPSs but also paves the way for the design of novel and efficient PSs to promote organic synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp04579jDOI Listing

Publication Analysis

Top Keywords

coupling benzylic
16
benzylic amines
16
photooxidative coupling
12
photophysical properties
12
visible light
8
amines imines
8
properties flpss
8
imines
5
flpss
5
tailoring flavin-based
4

Similar Publications

Excessive fossil fuel combustion has accelerated renewable energy development, with hydrogen energy emerging as a promising alternative due to its high energy density and environmental compatibility. Photocatalytic hydrogen production through solar energy conversion represents a viable approach for sustainable development. Metal-organic frameworks (MOFs) have garnered significant research interest owing to their structural tunability, well-defined catalytic sites, and post-synthetic modification capabilities.

View Article and Find Full Text PDF

2-Alkylindoles are privileged motifs that serve as versatile intermediates and building blocks in synthetic and medicinal chemistry. Herein, we report a photoinduced, EDA-complex-enabled C2-benzylic C(sp)-H alkylation of indoles with bromides through radical cross-coupling. This developed protocol provides facile access to 2-alkylindoles from structurally varied 2-methylindoles and bromides under mild reaction conditions with simple operation.

View Article and Find Full Text PDF

In this study, we report NNN pincer bis-imino pyridine-supported copper(II) catalysts for the sustainable, eco-friendly, and practical multi-component synthesis (MCS) of pyrazolines and pyrimidines driven by the acceptorless dehydrogenation of benzyl alcohols. Herein, we synthesize and characterize two well-defined phosphine-free NNN pincer-supported copper(II) complexes, C1 and C2, using IR, UV-vis, HRMS, and single-crystal XRD. Utilizing these complexes, we develop the first multi-component synthetic route for 1,3,5-trisubstituted pyrazolines (TriPyz) from the dehydrogenative coupling of renewable benzyl alcohols and aromatic ketones with phenyl hydrazine, generating ecologically benign HO and H as side products.

View Article and Find Full Text PDF

Inhibition of the insulin-regulated aminopeptidase (IRAP) is a promising therapeutic strategy for neurodegenerative disorders such as Alzheimer's disease, due to its role in cognitive processes. HA08, a macrocyclic peptidomimetic derived from angiotensin IV, is among the most potent known IRAP inhibitors (IC = 18 nM). However, detailed structure-activity relationship (SAR) studies at its C-terminus have been limited by synthetic constraints.

View Article and Find Full Text PDF

The C─H bond is the most abundant chemical bond in organic compounds. Therefore, the development of the more direct methods for C─H bond cleavage and the elucidation of their mechanisms will provide an important theoretical basis for achieving more efficient C─H functionalization and target molecule construction. In this study, the catalyst-free photon-induced direct homolysis of C─H bonds at room temperature was discovered for the first time.

View Article and Find Full Text PDF