Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A data-driven prediction tool has the potential to provide early warning of an asthma attack and improve asthma management and outcomes. Most previous machine learning (ML)-based studies for asthma attack prediction have reported a severe class imbalance, with major implications for model performance. We aimed to undertake a systematic comparison of several class imbalance handling techniques in the context of risk prediction models for asthma prognosis. We used data from 9,835 asthma patients extracted from the Medical Information Mart for Intensive Care (MIMIC) IV database and deployed five class imbalance handling methods based on synthetic minority oversampling technique (SMOTE) and cost function customisation. We then compared their performances in improving two-class classifier models developed using logistic regression (LR) and extreme gradient boosting (XGBoost) for three different prediction tasks with varying severity of class imbalance (proportion of majority class ranging from 90.86% to 98.98%). The cost function customisation technique substantially outperformed the SMOTE-based methods in all tasks. XGBoost combined with cost function customisation achieved the highest prediction performance for the outcome with the most extreme class imbalance ratio (AUC = 0.72). Our findings suggest that the cost function customisation-based approach to tackle class imbalance provides substantially better performance compared to oversampling in the context of asthma management.Clinical Relevance- This study underscores the challenge of class imbalance in the context of prediction tools to improve asthma management and outcomes and provides a methodological solution that addresses the challenge. Accurate asthma prediction tools can provide early warning and potentially prevent deterioration thereby improving the quality of life of patients with asthma.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC40787.2023.10340751DOI Listing

Publication Analysis

Top Keywords

class imbalance
32
cost function
16
asthma management
12
function customisation
12
asthma
10
imbalance
8
prediction
8
prediction models
8
provide early
8
early warning
8

Similar Publications

Knee osteoarthritis (KOA) affects millions of individuals worldwide and has no known curative treatment, making it a serious global health concern. The management of its development depends on early discovery, and X-ray imaging is a fundamental diagnostic technique. However, due to variations in radiologists' levels of experience, manual X-ray interpretation increases variability and possible inaccuracies.

View Article and Find Full Text PDF

Introduction: Rice is an important food crop but is susceptible to diseases. However, currently available spot segmentation models have high computational overhead and are difficult to deploy in field environments.

Methods: To address these limitations, a lightweight rice leaf spot segmentation model (MV3L-MSDE-PGFF-CA-DeepLabv3+, MMPC-DeepLabv3+) was developed for three common rice leaf diseases: rice blast, brown spot and bacterial leaf blight.

View Article and Find Full Text PDF

Background: ST-elevation myocardial infarction (STEMI) poses a significant threat to global mortality and disability. Advances in percutaneous coronary intervention (PCI) have reduced in-hospital mortality, highlighting the importance of post-discharge management. Machine learning (ML) models have shown promise in predicting adverse clinical outcomes.

View Article and Find Full Text PDF

Objective: Accurate segmentation of breast lesions, especially small ones, remains challenging in digital mammography due to complex anatomical structures and low-contrast boundaries. This study proposes DVF-YOLO-Seg, a two-stage segmentation framework designed to improve feature extraction and enhance small-lesion detection performance in mammographic images.

Methods: The proposed method integrates an enhanced YOLOv10-based detection module with a segmentation stage based on the Visual Reference Prompt Segment Anything Model (VRP-SAM).

View Article and Find Full Text PDF

First report on machine learning based multiclass classification of Caco-2 permeability using different balancing strategies.

SAR QSAR Environ Res

September 2025

Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.

Evaluating the permeability of different molecular structures across the Caco-2 cell line is crucial for drug discovery and development. The present study primarily focuses on developing machine learning-based multiclass classification models for predicting the permeability of molecules across the Caco-2 cell line. However, the class imbalance in permeability datasets poses a significant challenge for developing predictive models in the case of multiclass analysis.

View Article and Find Full Text PDF