Quantification of the effect of biochar application on heavy metals in paddy systems: Impact, mechanisms and future prospects.

Sci Total Environ

Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biochar (BC) has shown great potential in remediating heavy metal(loid)s (HMs) contamination in paddy fields. Variation in feedstock sources, pyrolysis temperatures, modification methods, and application rates of BC can result in great changes in its effects on HM bioavailability and bioaccumulation in soil-rice systems and remediation mechanisms. Meanwhile, there is a lack of application guidelines for BC with specific properties and application rates when targeting rice fields contaminated with certain HMs. To elucidate this topic, this review focuses on i) the effects of feedstock type, pyrolysis temperature, and modification method on the properties of BC; ii) the changes in bioavailability and bioaccumulation of HMs in soil-rice systems applying BC with different feedstocks, pyrolysis temperatures, modification methods, and application rates; and iii) exploration of potential remediation mechanisms for applying BC to reduce the mobility and bioaccumulation of HMs in rice field systems. In general, the application of Fe/Mn modified organic waste (OW) derived BC for mid-temperature pyrolysis is still a well-optimized choice for the remediation of HM contamination in rice fields. From the viewpoint of remediation efficiency, the application rate of BC should be appropriately increased to immobilize Cd, Pb, and Cu in rice paddies, while the application rate of BC for immobilizing As should be <2.0 % (w/w). The mechanism of remediation of HM-contaminated rice fields by applying BC is mainly the direct adsorption of HMs by BC in soil pore water and the mediation of soil microenvironmental changes. In addition, the application of Fe/Mn modified BC induced the formation of iron plaque (IP) on the root surface of rice, which reduced the uptake of HM by the plant. Finally, this paper describes the prospects and challenges for the extension of various BCs for the remediation of HM contamination in paddy fields and makes some suggestions for future development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168874DOI Listing

Publication Analysis

Top Keywords

application rates
12
application
8
pyrolysis temperatures
8
temperatures modification
8
modification methods
8
methods application
8
bioavailability bioaccumulation
8
soil-rice systems
8
remediation mechanisms
8
rice fields
8

Similar Publications

Background And Aim: Synthetic dyes in the textile industry pose risks to human health and environmental safety. The current study aims to examine the efficacy of a novel esterase derived from an endophyte fungus in decolorizing diverse dyes, focusing on its production, purification, optimization, and characterization.

Results: Trichoderma afroharzianum AUMC16433, a novel fungal endophyte with esterase-producing ability, was first detected from the cladodes of Opuntia ficus indica by ITS-rRNA sequencing.

View Article and Find Full Text PDF

Neural tumors represent diverse malignancies with distinct molecular profiles and present particular challenges due to the blood-brain barrier, heterogeneous molecular etiology including epigenetic dysregulation, and the affected organ's critical nature. KCC-07, a selective and blood-brain barrier penetrable MBD2 (methyl CpG binding domain protein 2) inhibitor, can suppress tumor development by inducing p53 signaling, proven only in medulloblastoma. Here we demonstrate KCC-07 treatment's application to other neural tumors.

View Article and Find Full Text PDF

Carotid-cavernous fistulas (CCF) are indirect or direct vascular shunts between vessels of the cavernous sinus and the carotid artery. While indirect CCFs have high rates of spontaneous resolution, direct CCF cases can result in significant orbital and neurological sequelae. This case describes a 75-year-old male patient presenting with acute subarachnoid hemorrhage secondary to a Barrow type-D CCF.

View Article and Find Full Text PDF

Novel Thermal Modification of Phosphate Tailings for Enhanced Heavy Metals Immobilization in Soil.

Environ Res

September 2025

State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:

Recent interest in amendments derived from industrial by-products has highlighted their potential for both resource recycling and heavy metal remediation. Phosphate tailings (PT), primarily dolomite-based solid waste with low utilization rates, offer a promising yet underexplored solution. This study pioneers the thermal modification of PT into a novel amendment, thermally modified phosphate tailings (TPT), to assess its adsorption performance, underlying mechanisms, and effectiveness in immobilizing heavy metals in soils.

View Article and Find Full Text PDF