98%
921
2 minutes
20
Prickly Ash Seeds (PAS), as a traditional Chinese medicinal herb, have pharmacological effects such as anti-asthma, anti-thrombotic, and anti-bacterial, but their impact on gut microbiota is still unclear. This study used a full-length 16 s rRNA gene sequencing technique to determine the effect of adding PAS to the diet on the structure and distribution of gut microbiota in Hu sheep. All lambs were randomly divided into two groups, the CK group was fed with a basal ration, and the LZS group was given a basal diet with 3% of PAS added to the ration. The levels of inflammatory factors (IL-10, IL-1β, and TNF-α) in intestinal tissues were measured by enzyme-linked immunosorbent assay (ELISA) for Hu sheep in the CK and LZS group. The results indicate that PAS can increase the diversity and richness of gut microbiota, and can affect the community composition of gut microbiota. LEfSe analysis revealed that , , , and were significantly enriched in the LZS group. KEGG pathway analysis found that LZS was significantly higher than the CK group in the Excretory system, Folding, sorting and degradation, and Immune system pathways ( < 0.05). The results of ELISA assay showed that the level of IL-10 was significantly higher in the LZS group than in the CK group ( < 0.05), and the levels of TNF-α and IL-1β were significantly higher in the CK group than in the LZS group ( < 0.05). LEfSe analysis revealed that the dominant flora in the large intestine segment changed from and to and after PAS addition to Hu sheep lambs; the dominant flora in the small intestine segment changed from and to and . In conclusion, the addition of PAS to sheep diets can increase the number and types of beneficial bacteria in the intestinal tract, improve lamb immunity, and reduce intestinal inflammation. It provides new insights into healthy sheep production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644117 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1273714 | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFBMC Vet Res
September 2025
Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
This study investigated the impact of dietary zeolite supplementation on growth, cecal microbiota and digesta viscosity, digestive enzymes, carcass traits, blood constituents, and antioxidant parameters of broilers. A completely randomized design was used with 240 one-day-old broiler chicks randomly assigned to three dietary treatments (0%, 1.5%, and 3% zeolite as a feed additive) with four replicates of 20 chicks each.
View Article and Find Full Text PDFJ Mol Neurosci
September 2025
Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey.
The ketogenic diet (KD), a high-fat, low-carbohydrate regimen, has been shown to exert neuroprotective effects in various neurological models. This study explored how KD-alone or combined with antibiotic-induced gut microbiota depletion-affects cognition and neuroinflammation in aging. Thirty-two male rats (22 months old) were assigned to four groups (n = 8): control diet (CD), ketogenic diet (KD), antibiotics with control diet (AB), and antibiotics with KD (KDAB).
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia.
Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.
View Article and Find Full Text PDFNat Microbiol
September 2025
Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.
Microbial influence on cancer development and therapeutic response is a growing area of cancer research. Although it is known that microorganisms can colonize certain tissues and contribute to tumour initiation, the use of deep sequencing technologies and computational pipelines has led to reports of multi-kingdom microbial communities in a growing list of cancer types. This has prompted discussions on the role and scope of microbial presence in cancer, while raising the possibility of microbiome-based diagnostic, prognostic and therapeutic tools.
View Article and Find Full Text PDF