98%
921
2 minutes
20
Optoelectronic synapses are currently drawing significant attention as fundamental building blocks of neuromorphic computing to mimic brain functions. In this study, a two-terminal synaptic device based on a doped PdSe flake is proposed to imitate the key neural functions in an optical pathway. Due to the wavelength-dependent desorption of oxygen clusters near the intrinsic selenide vacancy defects, the doped PdSe photodetector achieves a high negative photoresponsivity of -7.8 × 10 A W at 473 nm and a positive photoresponsivity of 181 A W at 1064 nm. This wavelength-selective bi-direction photoresponse endows an all-optical pathway to imitate the fundamental functions of artificial synapses on a device level, such as psychological learning and forgetting capability, as well as dynamic logic functions. The underpinning photoresponse is further demonstrated on a flexible platform, providing a viable technology for neuromorphic computing in wearable electronics. Furthermore, the p-type doping results in an effective increase of the channel's electrical conductivity and a significant reduction in power consumption. Such low-power-consuming optical synapses with simple device architecture and low-dimensional features demonstrate tremendous promise for building multifunctional artificial neuromorphic systems in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202306068 | DOI Listing |
Nano Lett
May 2025
Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States.
With the emergence of twistronics, twisting has been employed to manipulate phonon-phonon interactions in 2D-layered systems. However, due to the complexity of twisted structures, twisting-induced phonon localization and Boson-peak-like (BP-like) anomalies have not yet been reported. In this work, using machine-learning-supported molecular dynamics, we study the impact of interlayer twisting on the phonon properties in bilayer pentagonal PdSe (penta-PdSe) with multiple twist angles.
View Article and Find Full Text PDFNat Commun
March 2025
State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Materials Science, Fudan University, Shanghai, China.
Deep ultraviolet (DUV) photodetection usually relies on wide-bandgap semiconductors, which however face challenges in material growth and doping processes. In this work, we proposed and validated a photodetection scheme based on tunneling barrier modulation, achieving highly sensitive DUV photodetection. Using a two-dimensional van der Waals heterostructure, the device integrates MoS as the transporting layer for its high carrier mobility and low dark current, few-layered graphene (FLG) as the photon absorption layer, and hexagonal boron nitride (hBN) as the dielectric barrier.
View Article and Find Full Text PDFEnviron Res
March 2025
College of Artificial Intelligence, Southwest University, Chongqing, 400715, China; Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, 430068, China. Electronic address:
In this first-principles study, we simulate the adsorption of SOF and SOF molecules on the pristine, Cu- and Rh-doped PdSe monolayer, in order to explore their potentials as novel gas sensors for status evaluation of the SF-insulation devices. Single Cu or Rh atom is doped by the replacement of a Se atom within the PdSe surface, with the formation energy of 0.40 and -0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2024
State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Songhu Road 2005, Shanghai, 200438, China.
Conjugated polymers are emerging as competitive candidates for organic thermoelectrics (OTEs). However, to make the device truly pervasive, both p- and n-type conjugated polymers are essential. Despite great efforts, no n-type equivalents to the p-type benchmark PEDOT:PSS exist to date mainly due to the low electrical conductivity (σ).
View Article and Find Full Text PDF