N-doped molybdenum oxide quantum dots as fluorescent probes for the quantitative detection of copper ions in environmental samples.

Anal Methods

State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A novel, sensitive, and selective fluorescence sensor based on N-doped Mo oxide quantum dots (N-MoOx QDs) was fabricated for the detection of Cu ions in water. The presence of Cu induced dynamic fluorescence quenching of the N-MoOx QDs. The sensing conditions were optimized to enhance selectivity and sensitivity. Under optimal conditions, the linear relationship between fluorescence response at 408 nm and Cu concentration was determined. The linear range of this relationship was 1-100 μM. The limits of detection (LOD) and quantitation (LOQ) for Cu were 0.78 μM and 2.34 μM, respectively. The method was successfully applied to detect Cu in water samples with satisfactory sample recovery rates from 91.7 to 116.4%. The sensor exhibits high selectivity toward Cu, making it useful for environmental sample monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3ay01423aDOI Listing

Publication Analysis

Top Keywords

oxide quantum
8
quantum dots
8
n-moox qds
8
n-doped molybdenum
4
molybdenum oxide
4
dots fluorescent
4
fluorescent probes
4
probes quantitative
4
quantitative detection
4
detection copper
4

Similar Publications

A novel aggregation-induced emission (AIE) system with superior performance was successfully developed through local chemical modification from thiophene to thiophene sulfone. This approach, leveraging easily accessible tetraphenylthiophene precursors, dramatically enhances the photophysical properties in a simple oxidation step. Notably, the representative 2,3,4,5-tetraphenylthiophene sulfone (3c) demonstrates remarkable solid-state emission characteristics with a fluorescence quantum yield of 72% and an AIE factor of 240, substantially outperforming its thiophene analog.

View Article and Find Full Text PDF

Turn-on type fluorescent photochromism of a diarylmaleimide-S,S,S',S'-tetraoxide.

Photochem Photobiol Sci

September 2025

Faculity of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan.

In recent years, fluorescence-switchable molecules have garnered significant attention as fluorescent dyes for super-resolution fluorescence microscopy, which is increasingly demanded in the field of biochemical imaging. Among such molecules, diarylethene-S,S,S',S'-tetraoxide derivatives have proven particularly promising due to their ability to achieve high contrast fluorescence switching. Diarylethenes incorporating perfluorocyclopentene as the ethene bridge have become the standard scaffold due to their excellent fatigue resistance and thermal stability.

View Article and Find Full Text PDF

Nitrogenase accumulates reducing equivalents in hydrides and couples H elimination to the reductive binding of N at a di-iron edge of its FeMo cofactor (FeMoco). Here, we describe that oxidation of a pyrazolato-based dinickel(II) dihydride complex K[L(Ni-H)] (), either electrochemically or chemically using H or ferrocenium, triggers H elimination and binding of N in a constrained and extremely bent bridging mode in [LNi(μ-N)] (). Spectroscopic and computational evidence indicate that the electronic structure of is best described as Ni-(N)-Ni, with a rare 1e reduced and significantly activated N substrate ( = 1894 cm).

View Article and Find Full Text PDF

Synergistic t-to-π* Electron Transfer and Nanotube Engineering in Spinal Catalysts for Ultra-Efficient Chloride Evolution.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.

Facing the massive energy consumption of over 200 TWh y of chlor-alkali industry, developing high-activity and durable non-precious CER (chlorine evolution reaction) catalysts is urgently needed to address the high overpotentials and suppress the dissolution high-valance metal species. Herein, a carbon quantum dots functionalized trimetallic Fe/Co/Ni spinel oxide nanotube architecture (FCNO@CQDs) is constructed, featuring t-to-π* π-backbonding for dramatically enhanced CER activity and stability. The reverse electron flow from Co d-obritals to the vacant CQDs' π* orbitals can upshift the d-band center for enhanced intermediate adsorption, while stabilizing high-valent Co centers via increased bond order.

View Article and Find Full Text PDF

Nowadays, the continuous advancement of sodium-ion battery technology has made it an important choice in the new energy field and promoted the development of lithium-ion batteries. The cycling stability of cathode materials for sodium-ion batteries at high voltage (>4.0 V) is still a key challenge.

View Article and Find Full Text PDF