Managing mineral phosphorus application with soil residual phosphorus reuse in Canada.

Glob Chang Biol

Bieler School of Environment and Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With limited phosphorus (P) supplies, increasing P demand, and issues with P runoff and pollution, developing an ability to reuse the large amounts of residual P stored in agricultural soils is increasingly important. In this study, we investigated the potential for residual soil P to maintain crop yields while reducing P applications and losses in Canada. Using a P cycling model coupled with a soil P dynamics model, we analyzed soil P dynamics over 110 years across Canada's provinces. We found that using soil residual P may reduce mineral P demand as large as 132 Gg P year (29%) in Canada, with the highest potential for reducing P applications in the Atlantic provinces, Quebec, Ontario, and British Columbia. Using residual soil P would result in a 21% increase in Canada's cropland P use efficiency. We expected that the Atlantic provinces and Quebec would have the greatest runoff P loss reduction with use of residual soil P, with the average P loss rate decreasing from 4.24 and 1.69 kg ha to 3.45 and 1.38 kg ha , respectively. Ontario, Manitoba, and British Columbia would experience relatively lower reductions in P loss through use of residual soil P, with the average runoff P loss rate decreasing from 0.44, 0.36, and 4.33 kg ha to 0.19, 0.26, and 4.14 kg ha , respectively. Our study highlights the importance of considering residual soil P as a valuable resource and its potential for reducing P pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.17001DOI Listing

Publication Analysis

Top Keywords

residual soil
20
soil
9
residual
8
soil residual
8
reducing applications
8
soil dynamics
8
potential reducing
8
atlantic provinces
8
provinces quebec
8
british columbia
8

Similar Publications

Efficient degradation mechanism of fomesafen by earthworms and gut degrading bacteria synthetic community.

Pestic Biochem Physiol

November 2025

College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China. Electronic address:

Fomesafen (FSA), a diphenyl ether herbicide, causes toxicity to non-target organisms and subsequent crops. Vermi-remediation is advocated as an effective remediation method, but there has been no research on the isolation and mechanism of FSA-degradation strains from earthworm gut. In this study, three ecotypes of earthworms- Eisenia foetida (epigeic), Metaphire guillelmi (anecic), and Aporrectodea caliginosa (endogenic), were used to investigate the degradation mechanism of FSA in soil-plant-earthworm systems for the first time.

View Article and Find Full Text PDF

Synergistic enhancement effect of straw-earthworms in the reduction of sulfamethoxazole and antibiotic resistance genes.

Ecotoxicol Environ Saf

September 2025

Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China. Electronic address:

Soil antibiotic pollution is a global concern. It has been confirmed that straw or earthworm can enhance microbial degradation of antibiotics in soil. However, in the C/N transformation processes of soil ecosystems, straw and earthworms are closely interconnected.

View Article and Find Full Text PDF

An improving spectral PTF for mining area soil water content prediction: combining 2D correlation spectroscopy and soil-crop indicators with ResGRU.

Spectrochim Acta A Mol Biomol Spectrosc

August 2025

State Key Laboratory for Safe Mining of Deep Coal Resources and Environment Protection, Anhui University of Science and Technology, Huainan 232001, China; School of Spatial Informatics and Geomatics Engineering, Anhui University of Science and Technology, Huainan 232001, China. Electronic address: c

Conventional methods for soil sampling and soil water content (SWC) measurement are often labor-intensive and time-consuming. The Pedo-transfer function (PTF) integrating soil spectroscopy with soil physicochemical properties provides a more efficient approach for SWC estimation. However, existing studies highlight regional limitations in the accuracy of PTFs across diverse geographical regions.

View Article and Find Full Text PDF

Overcoming tetracycline pollution in soils through the addition of a mycorrhizal fungal species Funneliformis mosseae.

Ecotoxicol Environ Saf

September 2025

Faculty of Science and Technology, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia. Electronic address:

The presence of residual antibiotics in the black soils of northeastern China poses a significant threat to food safety. This study investigated the potential of Funneliformis mosseae, one of the predominant biocontrol fungi in northeastern China, to mitigate the negative effects of tetracycline contamination (40 mg kg⁻¹) in soil. Advanced biotechnological methods were employed to assess plant growth, soil microbial antioxidant enzyme activity, and soil fertility.

View Article and Find Full Text PDF

Public concerns exist over whether land application of biosolids is a pathway of introducing large amounts of per- and polyfluorinated alkyl substances (PFAS) into terrestrial ecosystems. Ongoing research is investigating a variety of high organic matter (OM) and Al/Fe phases for use as amendments to reduce PFAS leaching from matrices including biosolids. Drinking water treatment residuals (DWTRs) have characteristics (e.

View Article and Find Full Text PDF