98%
921
2 minutes
20
One of the most frequent environmental contaminants, benzene is still widely used as an industrial solvent around the world, especially in developing nations, posing a serious occupational risk. While the processes behind the toxicity of benzene grounds are not fully understood, it is generally accepted that its metabolism, which involves one or more reactive metabolites, is crucial to its toxicity. In order to evaluate the many ways that benzene could influence gene regulation and thus have an impact on human health, new methodologies have been created. The pathophysiology of the disorder may result from epigenetic reprogramming caused by exposure to benzene, including changes in non-coding RNA (ncRNA) markers, according to recent studies. We are interested in the identification of hazardous regulatory ncRNAs, the identification of these ncRNAs' targets, and the comprehension of the significance of these interactions in the mechanisms behind benzene toxicity. Hence, the focus of recent research is on long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs), and some of the more pertinent articles are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2023.153660 | DOI Listing |
Plant J
September 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Genome imbalance, resulting from varying the dosage of individual chromosomes (aneuploidy), has a more detrimental effect than changes in complete sets of chromosomes (haploidy/polyploidy). This imbalance is likely due to disruptions in stoichiometry and interactions among macromolecular assemblies. Previous research has shown that aneuploidy causes global modulation of protein-coding genes (PCGs), microRNAs, and transposable elements (TEs), affecting both the varied chromosome (cis-located) and unvaried genome regions (trans-located) across various taxa.
View Article and Find Full Text PDFBioimpacts
August 2025
Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye.
Colorectal cancer (CRC) constitutes a significant global health challenge, accounting for a considerable proportion of cancer cases and associated mortality. Projections indicate a potential increase in new cases by 2040, attributed to demographic factors such as aging and population growth. Although advancements in the understanding of CRC pathophysiology have broadened treatment options, challenges such as drug resistance and adverse effects persist, highlighting the necessity for enhanced diagnostic methodologies.
View Article and Find Full Text PDFJ Periodontal Res
September 2025
Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile.
This study identifies a transcriptomic profile of long noncoding RNAs in gingival crevicular fluid samples in pregnant women with gestational diabetes risk. NEAT1 and LINC-PINT were increased expression in gingival crevicular fluid samples in pregnancies later diagnosed with gestational diabetes mellitus.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
October 2025
Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and frontotemporal dementia represent a significant global health burden with limited therapeutic options. Current treatments are primarily symptomatic and fail to modify disease progression, emphasizing the urgent need for novel, mechanism-based interventions. Recent advances in molecular neuroscience have identified several non-classical pathogenic pathways, including neuroinflammation, mitochondrial dysfunction, impaired autophagy and proteostasis, synaptic degeneration and non-coding RNA dysregulation.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
September 2025
Department of Stomatology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing, 100142, PR China.
TP53TG1 is a long non-coding RNA related to the TP53 gene, which plays an important role in various biological processes such as tumorigenesis, cell cycle regulation, and DNA damage repair. In recent years, researchers have begun to explore the role of TP53TG1 in dental pulp biology, especially its potential impact on pulpitis and other pulp-related diseases. However, the role of TP53TG1 in human dental pulp stem cells (hDPSCs) remains unclear.
View Article and Find Full Text PDF