Reflecting on the cardiac toxicity in non-small cell lung cancer in the era of immune checkpoint inhibitors therapy combined with thoracic radiotherapy.

Biochim Biophys Acta Rev Cancer

Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China; Radiation Induce

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, immune checkpoint inhibitors (ICIs) have become a widely used treatment for non-small cell lung cancer (NSCLC), and the combination with traditional radiotherapy (RT) has shown significant potential in prolonging patient survival. However, both thoracic RT and ICIs can lead to cardiac toxicity, including radiation-induced heart damage (RIHD) and immunotherapy-related heart damage (IRHD). It still remains uncertain whether the combination of thoracic RT and immunotherapy will exacerbate acute or late cardiovascular (CV) toxicity and incidence. In this review, we summarize safety data from relevant clinical studies regarding CV toxicity for the combination therapy in NSCLC patients, explore the underlying synergetic mechanisms and common risk factors, and proposed treatment and management strategies. We hope to increase emphasis on the long-term assessment of CV toxicity risks associated with the combination therapy, and reduce the incidence of CV deaths resulting from such regimens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbcan.2023.189008DOI Listing

Publication Analysis

Top Keywords

cardiac toxicity
8
non-small cell
8
cell lung
8
lung cancer
8
immune checkpoint
8
checkpoint inhibitors
8
heart damage
8
combination therapy
8
toxicity
5
reflecting cardiac
4

Similar Publications

Morning administration of anthracyclines is associated with a lower risk of cancer therapy-related cardiac dysfunction.

Eur Heart J Open

September 2025

Department of Cardiology, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.

Aims: Pre-clinical studies point towards an administration time-dependency of anthracycline-induced cancer therapy-related cardiac dysfunction (CTRCD). This retrospective study aimed to investigate the association between time-of-day of AC administration and CTRCD.

Methods And Results: Patients from two cardio-oncology outpatient clinics, treated with ACs for any malignancy, were included.

View Article and Find Full Text PDF

Technological advances and the desire to reduce dependence on animal models have brought human-relevant models to the forefront of drug development. This paradigm shift is leveraging the advances in systems and new approach methodologies (NAMs), which was the focus of a workshop convened by the Health and Environmental Sciences Institute (HESI) in May 2024. Highlights included discussions on predicting cardiac failure modes and the utility of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), microfluidic systems like BioFlux™, and engineered heart tissues in enhancing early-stage drug safety assessments.

View Article and Find Full Text PDF

Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.

View Article and Find Full Text PDF

Evolving Cardioprotective Strategies in Cardio-Oncology: A Narrative Review.

Curr Cardiol Rep

September 2025

Division of Cardiology, Health Sciences Building, University of Washington Medical Center, 1959 NE Pacific StreetSuite #A506D Box 356422, Seattle, WA, 98195, USA.

Purpose Of Review: Patients living with cancer are at risk for significant potential cardiovascular complications as a direct result of cancer treatment or due to underlying comorbid cardiovascular disease. This article reviews the methods of risk stratification as well as pharmacologic and nonpharmacologic approaches to cardioprotection in cardio-oncology.

Recent Findings: Several cancer-specific risk stratification tools have incorporated variables such as age, sex, cancer subtype, traditional cardiovascular risk factors and cancer treatment-related parameters to assess cardiovascular specific risk prior to cancer therapy.

View Article and Find Full Text PDF

Heart failure (HF) is a complex clinical syndrome marked by impaired contractility, adverse remodeling, and dysregulated intracellular signaling. Protein kinases are central regulators of cardiac function, modulating calcium handling, gene transcription, hypertrophy, and apoptosis through phosphorylation of target proteins. In HF, chronic activation of kinases such as protein kinase A, protein kinase C, calcium/calmodulin-dependent kinase II, mitogen-activated protein kinases, protein kinase B, and Rho-associated protein kinase contributes to progressive cardiac dysfunction.

View Article and Find Full Text PDF