scATAC-Ref: a reference of scATAC-seq with known cell labels in multiple species.

Nucleic Acids Res

The First Affiliated Hospital & Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chromatin accessibility profiles at single cell resolution can reveal cell type-specific regulatory programs, help dissect highly specialized cell functions and trace cell origin and evolution. Accurate cell type assignment is critical for effectively gaining biological and pathological insights, but is difficult in scATAC-seq. Hence, by extensively reviewing the literature, we designed scATAC-Ref (https://bio.liclab.net/scATAC-Ref/), a manually curated scATAC-seq database aimed at providing a comprehensive, high-quality source of chromatin accessibility profiles with known cell labels across broad cell types. Currently, scATAC-Ref comprises 1 694 372 cells with known cell labels, across various biological conditions, >400 cell/tissue types and five species. We used uniform system environment and software parameters to perform comprehensive downstream analysis on these chromatin accessibility profiles with known labels, including gene activity score, TF enrichment score, differential chromatin accessibility regions, pathway/GO term enrichment analysis and co-accessibility interactions. The scATAC-Ref also provided a user-friendly interface to query, browse and visualize cell types of interest, thereby providing a valuable resource for exploring epigenetic regulation in different tissues and cell types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767920PMC
http://dx.doi.org/10.1093/nar/gkad924DOI Listing

Publication Analysis

Top Keywords

chromatin accessibility
16
cell labels
12
accessibility profiles
12
cell types
12
cell
11
scatac-ref
4
scatac-ref reference
4
reference scatac-seq
4
scatac-seq cell
4
labels
4

Similar Publications

Hybrid epigenome unveils parental genetic divergence shaping salt-tolerant heterosis in Brassica napus.

New Phytol

September 2025

National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Heterosis holds great potential for improving yield, quality, and environmental adaptability in crop breeding, which suggests that hybrids can exhibit better performance in adapting to extreme environments. However, the epigenetic mechanisms of salt-tolerant heterosis in allopolyploid crop Brassica napus (AACC, 2n = 38), particularly chromatin accessibility, remain largely unexplored. We investigated the dynamics of chromatin accessibility and transcriptional reprogramming during a time course of salt exposure in Brassica napus hybridization.

View Article and Find Full Text PDF

Hypoxia is a key histopathological feature of glioblastoma, associated with tumor aggressiveness and therapy resistance. Glioma-associated microglia and macrophages (GAMs) are key players in the tumor microenvironment of glioblastoma and acquire immunosuppressive properties during tumor progression. We show that hypoxia alters key GAM identity genes, as it upregulates the expression of monocytic marker lectin galactoside-binding doluble 3 (Lgals3) and downregulates the homeostatic microglial markers purinergic receptor P2Y G-protein coupled 12 (P2ry12) and transmembrane protein 119 (Tmem119) in GAMs co-cultured with glioma cells and in glioblastoma patients' samples.

View Article and Find Full Text PDF

Purpose: The mammalian cochlea has two types of low abundance and highly specialized inner (IHC) and outer (OHC) mechanosensory hair cells. Their malfunction or death is a common cause of congenital and acquired deafness. IHCs and OHCs exhibit different transcriptomes during development.

View Article and Find Full Text PDF

To uncover molecular determinants of motor neuron degeneration and selective vulnerability in amyotrophic lateral sclerosis (ALS), we generated longitudinal single-nucleus transcriptomes and chromatin accessibility profiles of spinal motor neurons from the SOD1-G93A ALS mouse model. Vulnerable alpha motor neurons showed thousands of molecular changes, marking a transition into a novel cell state we named 'disease-associated motor neurons' (DAMNs). We identified transcription factor regulatory networks that govern how healthy cells transition into DAMNs as well as those linked to vulnerable and resistant motor neuron subtypes.

View Article and Find Full Text PDF

The spatial organization and dynamics of a genome are central to gene regulation. While a comprehensive understanding of chromatin organization in the human nucleus has been achieved using fixed-cell methods, measuring the dynamics of specific genomic regions over extended periods in individual living cells remains challenging. Here, we present a robust and fully genetically encoded system for fluorescent labeling and long-term tracking of any accessible non-repetitive genomic locus in live human cells using fluorogenic and replenishable nanobody array fusions of the dCas9, and compact polycistronic single guide (sg)RNAs.

View Article and Find Full Text PDF