Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Generating Real World Evidence (RWE) on disease responses from radiological reports is important for understanding cancer treatment effectiveness and developing personalized treatment. A lack of standardization in reporting among radiologists impacts the feasibility of large-scale interpretation of disease response. This study examines the utility of applying natural language processing (NLP) to the large-scale interpretation of disease responses using a standardized oncologic response lexicon (OR-RADS) to facilitate RWE collection. Radiologists annotated 3503 retrospectively collected clinical impressions from radiological reports across several cancer types with one of seven OR-RADS categories. A Bidirectional Encoder Representations from Transformers (BERT) model was trained on this dataset with an 80-20% train/test split to perform multiclass and single-class classification tasks using the OR-RADS. Radiologists also performed the classification to compare human and model performance. The model achieved accuracies from 95 to 99% across all classification tasks, performing better in single-class tasks compared to the multiclass task and producing minimal misclassifications, which pertained mostly to overpredicting the equivocal and mixed OR-RADS labels. Human accuracy ranged from 74 to 93% across all classification tasks, performing better on single-class tasks. This study demonstrates the feasibility of the BERT NLP model in predicting disease response in cancer patients, exceeding human performance, and encourages the use of the standardized OR-RADS lexicon to improve large-scale prediction accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605614PMC
http://dx.doi.org/10.3390/cancers15204909DOI Listing

Publication Analysis

Top Keywords

disease response
12
classification tasks
12
applying natural
8
natural language
8
language processing
8
or-rads lexicon
8
disease responses
8
radiological reports
8
large-scale interpretation
8
interpretation disease
8

Similar Publications

Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.

Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.

View Article and Find Full Text PDF

Background: Risk stratification in posterior circulation ischemic stroke (PCIS) is challenging. Although the Posterior Circulation Ischemic Stroke Outcome Score (PCISOS) was developed to address this, its utility in minor PCIS and in identifying homogeneous populations for clinical trials or treatment-responsive subgroups remains uncertain.

Methods: CHANCE-2 (Clopidogrel in High-Risk Patients With Acute Non-disabling Cerebrovascular Events-II) was a multicenter, randomized trial that enrolled patients with minor stroke or high-risk transient ischemic attack who carried CYP2C19 loss-of-function alleles.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a prevalent chronic disease, characterized by progressive joint degeneration and primarily affects older adults. OA leads to reduced functional abilities, a lower quality of life, and an increased mortality rate. Currently, effective treatment options for OA are lacking.

View Article and Find Full Text PDF

Introduction: Interstitial lung disease is a major complication in patients with common variable immunodeficiency. There are some publications that try to shed light on the pathophysiology of this non-infectious complication, most of them highlight the role of follicular T cells and CD21 B cells. Moreover, there are no guidelines based on randomized controlled studies on the treatment of patients with interstitial lung disease and the published case series or small uncontrolled studies describe a wide range of response rates to treatment.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF